Beijing Institute of Remote Sensing Equipment, Beijing 100854, China 在期刊界中查找 在百度中查找 在本站中查找
Affiliation:
Beijing Institute of Remote Sensing Equipment, Beijing 100854, China
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献 [17]
|
相似文献 [15]
|
引证文献
|
资源附件
|
文章评论
摘要:
针对高速动平台短时突发通信的应用场景下,短帧结构的正交频分复用(Orthogonal frequency division multiplexing, OFDM)系统中训练序列和导频的数量受限,单一同步算法难以同时满足大范围和高精度的符号定时同步和载波相位同步问题。本文提出了一种改进的OFDM通信系统时间、频率快速同步算法,该算法借助短训练序列与导频信息,以粗定时捕获同步,粗频偏估计/校正,精频偏估计/校正,精定时估计/校正的同步流程,实现了大范围和高精度的符号定时同步和载波相位同步。经过仿真校验,该算法能够有效提高高速动平台短时突发通信的OFDM同步精度。
In the short-time and burst communication for moving platforms, the number of training sequences and pilots is limited in the orthogonal frequency division multiplexing (OFDM) system because the structure of frames is short. And it is hard for a single algorithm to meet the requirements of the large range and high precision of symbol and carrier synchronization. This paper proposes an improved symbol and carrier synchronization algorithm for the OFDM system with the help of the short training sequence and pilot information. The algorithm implements the large range carrier synchronization and the high precision symbol synchronization through the process of coarse symbol synchronization, coarse frequency synchronization, fine frequency synchronization and fine symbol synchronization. Simulation results show that the algorithm can effectively improve the OFDM synchronization accuracy of the short-time and burst communication for moving platforms.
[1] Yong S C, Jaekwon K. MIMO-OFDM无线通信技术及MATLAB实现[M]. 孙锴,黄威,译. 北京:电子工业出版社,2013.
[2] SCHMIDL T M, COX D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Trans on Commun, 1997, 45(12): 1613-1621.
[3] MINN H, ZENG M, BHARGAVA V K. On timing offset estimation for OFDM system[J]. IEEE Comm Lett, 2000, 4(7): 242-244.
[4] PARK B, CHEON H, KANG C, et al. A novel timing estimation method for OFDM systems[J]. IEEE Comm Lett , 2003, 7(5): 239-241.
[5] VAN DE BEEK J J, SANDELL M, BORJESSON P O. ML estimation of time and frequency offset in OFDM system[J]. IEEE Transactions on Signal Processing, 1997, 45(7): 1800-1805.
[6] TAKAHASHI K, SABA T. A novel symbol synchronization algorithm with reduced influence of ISI for OFDM systems[C]∥Proceedings of IEEE Global Telecommunications Conference. San Antonio, TX, USA:IEEE, 2001: 524-528.
[7] RAMASUBRAMANIAN K, BAUM K. An OFDM timing recovery scheme with reduced influence of ISI for OFDM systems[C]∥Proceedings of IEEE Global Telecommunications Conference. San Antonio, TX, USA:IEEE, 2001: 3111-3115.
[8] SHENG Bin, ZHENG Jun, YOU Xiaohu, et al. A novel timing synchronization method for OFDM systems[J]. IEEE Communications Letters, 2010, 14(12): 1110-1112.
[9] PARK B, CHEON H, KO E, et al. A blind OFDM synchronization algorithm based on cyclic correlation[J]. IEEE Signal Processing Letters, 2004, 11(2): 83-85.
[10] MOOSE P H. A Technique for orthogonal frequency division multiplexing frequency offset correction[J]. IEEE Transaction on Communications, 1994, 42(10): 2908-2914.
[11] CLASSEN F, MEYR H. Frequency synchronization algorithm for OFDM systems suitable for communication over frequency selective fading channels[C]∥ Proceedings of IEEE Vehicular Technology Conference (VTC).Stockholm, Sweden: IEEE, 1994: 1655-1659.
[14] MA Yunsi, ZHOU Sanwen, YAN Chaoxing, et al. Design of OFDM timing synchronization based on correlations of preamble symbol[C]∥Proceedings of Vehicular Technology Conference. Nanjing: IEEE, 2016: 1-5.
[15] LIU Mingqian, WANG Ju, LI Bingbing. Non-data aided joint estimation of symbol timing offset and carrier frequency offset for OFDM/OQAM system[J]. International Journal of Electronics and Communications, 2018, 87(2): 164-172.