空间平台发射拦截器动力学与最优脉冲拦截
作者:
作者单位:

1.南京航空航天大学航天学院,南京 211106;2.南京航空航天大学无人机研究院,南京 210016

作者简介:

通讯作者:

韩艳铧,男,副教授,硕士生导师,E-mail: hanyanhua@nuaa.edu.cn。

中图分类号:

V212

基金项目:

中央高校基本科研业务费青年科技创新基金(NT2020025)。


Dynamics of Space Platform Launching Interceptor and Optimal Impulse Interception
Author:
Affiliation:

1.College of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2.UAV Research Institute, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了空间平台发射拦截器的两体耦合动力学,以及拦截器拦截目标星的最优脉冲控制问题。平台首先与目标星形成绕飞关系,保持其发射筒轴线始终瞄准目标星。接到发射指令后,拦截器从发射筒中射出,本文采用拉格朗日第二类方程建立了发射过程平台-拦截器两体动力学模型。因为两体耦合影响,平台姿态偏转,拦截器出筒时的速度已经不能瞄准目标星。通过小型火箭发动机给其施加速度脉冲,使其进入拦截轨道,保证拦截的同时,将脉冲速度最小化以节省燃料,本文将其归结为一个非线性规划问题,采用三级优化的策略来求解。在拦截飞行时间相较于平台绕飞目标星的周期是小量的条件下,可以视绕飞平均角速度为小参数,采用正则摄动方法求出非线性规划的一阶近似解,然后以此为迭代初值,寻找最优真解。最后进行了数值仿真验证。

    Abstract:

    The paper studies the two-body coupling dynamics between the space platform and interceptor during launching process, as well as optimization of the impulse control of the interceptor. The space platform forms an orbiting relationship with the target satellite, keeping its launch tube axis aiming at the target satellite. After receiving the launch command, the interceptor shoots out from the launch tube. The Lagrange equation of the second type is used to establish the platform-interceptor two-body dynamics model. Due to the effect of the coupling of the two bodies, the attitude of the platform is perturbed, causing the interceptor unable to accurately aim at the target satellite while separating the tube. At the moment, a velocity impulse is applied to the interceptor through its small rocket engine to make the interceptor enter the intercepting orbit. While the interception is ensured, the impulse velocity is minimized to save fuel. The paper summarizes it as a nonlinear programming problem. A three-level optimization strategy is presented to solve it. Under the condition that the interception flight time is small compared with the period of the platform orbiting the target satellite, the average angular velocity of the orbiting flight can be regarded as a small parameter, and the canonical perturbation method can be used to obtain the first-order approximate solution of the nonlinear programming. Then the optimizing iteration process is started from the approximate solution as its initial guess value. Finally, a numerical simulation verification is carried out.

    参考文献
    相似文献
    引证文献
引用本文

韩艳铧,王磊,张勇.空间平台发射拦截器动力学与最优脉冲拦截[J].南京航空航天大学学报,2022,54(6):1065-1073

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-14
  • 最后修改日期:2021-06-03
  • 录用日期:
  • 在线发布日期: 2022-12-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司