小样本图像分类中的类别信息融合网络
作者:
作者单位:

1.郑州师范学院信息科学与技术学院,郑州450044;2.中国科学技术大学信息科学技术学院,合肥230026;3.北京中科研究院,北京100049;4.湖南科技大学计算机科学与工程学院,湘潭411201

作者简介:

通讯作者:

尚志华,男,博士研究生, E­mail: shangzh@mail.ustc.edu.cn。

中图分类号:

TP183

基金项目:

国家自然科学基金重点项目 (U19B2023);河南省本科高校青年骨干教师培养计划(2021GGJS170);湖南省教育厅科学研究重点项目 (19A172)。


Category Information Fusion Network in Few-Shot Image Classification
Author:
Affiliation:

1.College of Information Science and Technology, Zhengzhou Normal University, Zhengzhou 450044, China;2.Department of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China;3.Beijing Research Institute, University of Science and Technology of China, Beijing 100049, China;4.Department of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小样本图像分类任务要求模型仅从少量的图像样本中学到新类别的正确分类方法,是一种特殊的分类任务。然而,以往大多数小样本工作都单独处理来自不同类别的样本,而没有充分利用到不同类别间的信息。本文提出了一种新的类别融合网络(Category-fusion network, CFN),通过融合来自不同类别的样本信息,同时挖掘类别内和类别间的信息。CFN的重要部分是一个融合映射的学习,即如何融合样本中的特征,从而映射出网络参数。其中的一个重要问题是融合映射是否应该随不同的输入样本而改变。本文设计了3个不同的模块:具有固定映射的类无关模块、融合映射仅依赖于期望学习的目标类别的半相关模块和完全相关的模块,其中融合映射完全依赖于输入样本。本文的网络可以通过学习多个类别的样本之间的关系来进行类别概念的学习,并生成融合信息的分类器。实验结果表明,本文网络在广泛应用的MiniImageNet数据集上得到了60.03%的分类精度。

    Abstract:

    Few-shot image classification is a special task where the model learns to build correct concepts of categories from only a few examples. Due to the frequent occurrence of few-shot scenarios, it has aroused extensive research. However, most previous few-shot models process examples from different categories individually without considering inter-classes information. We propose a novel category-fusion network (CFN) to exploit the intra- and inter-classes information simultaneously by fusing the information of examples from different categories. The key part of CFN is the learning of a fusion map, that is, how to fuse the features in the sample to map out the network parameters. There is an important problem that whether the fusion mapping should change with different input examples. To explore this problem, we design three different modules:(1)the class-irrelevant module with a fixed mapping; (2)the semi-relevant module where the fusion mapping only depends on the target category whose knowledge is expected to be learned; (3)the fully-relevant module where the fusion mapping totally depends on input examples. Our network can build the concept of a certain category by learning from examples of several categories, and generates a classifier with fused information. The experiments show the effectiveness of our network in few-shot learning, which obtains 60.03% in accuray on the widely used MiniImageNet dataset.

    参考文献
    相似文献
    引证文献
引用本文

张玉,尚志华,郭晓楠,黄福玉,刘毅志.小样本图像分类中的类别信息融合网络[J].南京航空航天大学学报,2022,54(4):715-722

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-03
  • 最后修改日期:2021-11-10
  • 录用日期:
  • 在线发布日期: 2023-02-22
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司