壁温比对高速钝锥边界层转捩天地差异的影响研究
CSTR:
作者:
作者单位:

空间物理重点实验室,北京 100076

通讯作者:

姚世勇,男,博士,高级工程师, E-mail:shiyong-yao@163.com。

中图分类号:

V411

基金项目:

国家自然科学基金(U21B6003,12172058)。


Effects of Ratio of Wall Temperature to Total Temperature on Discrepancy of Boundary Layer Transition in Flight and Ground Cases of High Speed Blunt Cone
Author:
Affiliation:

Science and Technology on Space Physics Laboratory, Beijing 100076, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    首先对比了天上飞行状态与地面风洞状态下钝锥边界层的转捩特性,然后利用基于线性稳定性理论的eN方法对飞行状态与风洞状态下的钝锥边界层进行了转捩预示,最后研究了壁温比对高速钝锥边界层的稳定性及转捩的影响。研究结果表明,在低壁温比条件下,圆锥迎风中心与侧面的边界层先于两者之间区域转捩,转捩形貌与飞行实验结果相似;在高壁温比条件下,圆锥迎风面区域迟于侧面及背风面区域转捩,转捩形貌与风洞试验结果相似。壁温比是造成高速钝锥边界层转捩天地差异的重要影响因素。

    Abstract:

    The transition characteristics of blunt cone boundary layers under the flight and ground conditions were firstly compared. Then the eN method based on the linear stability theory was used to predict the boundary layer transition of blunt cone in the cases of ground and flight tests. Finally the effects of ratio of wall temperature to total temperature on the stability and transition of boundary layer of high speed blunt cone were investigated. The results showed that the boundary layer transition on the centerline of windward face and the side face happened earlier than that between them under the condition of lower ratio of wall temperature to total temperature, and the transition morphology is similar to that in flight cases. However, the boundary layer transition on the windward face occurred later than that on the leeward face in higher ratio of wall temperature to total temperature, and the transition morphology is similar to that of in ground cases. The ratio of wall temperature to total temperature is an important factor which results in the discrepancy of boundary layer transition in flight and ground cases of high speed blunt cone.

    参考文献
    [1] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. I-Sharp cone: AIAA-83-1761[R].[S.l.]: AIAA, 1983.
    [2] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. II-Blunt cone: AIAA-84-0006[R].[S.l.]: AIAA, 1984.
    [3] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅲ—Sharp cone at angle of attack: AIAA-85-0492[R].[S.l.]: AIAA, 1985.
    [4] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅳ—On unit Reynolds number and environmental effects: AIAA-86-1087[R].[S.l.]: AIAA, 1986.
    [5] Stetson K, Thompson E, Donaldson J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. Ⅴ—Tests with a cooled model: AIAA-89-1895[R].[S.l.]: AIAA, 1989.
    [6] 苏彩虹, 周恒. 零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报[J]. 应用数学和力学, 2007, 28(5): 505-513.Su Caihong, Zhou Heng. Stability analysis and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack[J]. Applied Mathematics and Mechanic, 2007, 28(5): 505-513.
    [7] 董明, 罗纪生. 高超音速零攻角尖锥边界层转捩的机理[J]. 应用数学和力学, 2007, 28(8): 912-920.Dong Ming, Luo Jisheng. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack[J]. Applied Mathematics and Mechanic, 2007, 28(8): 912-920.
    [8] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22: 025105.
    [9] Kimmel R L, Adamczak D, Paull A, et al. HIFiRE-1 ascent-phase boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2015, 52(1): 217-230.
    [10] Li F, Choudhari M, Chang C L, et al. Transition analysis for the ascent phase of HIFiRE-1 flight experiment[J]. Journal of Spacecraft and Rockets, 2015, 52(5): 1283-1293.
    [11] Stanfield S A, Kimmel R L, Adamczak D. HIFiRE-1 flight data analysis: Turbulent shock-boundary-layer interaction experiment during ascent: AIAA Paper 2012-2703[R].[S.l.]: AIAA, 2012.
    [12] Stanfield S A, Kimmel R L, Adamczak D. HIFiRE-1 flight data analysis: Boundary layer transition experiment during reentry: AIAA Paper 2012-1087[R].[S.l.]: AIAA, 2012.
    [13] Stanfield S A, Kimmel R L, Adamczak D, et al. Boundary-layer transition experiment during reentry of HIFiRE-1[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 637-649.
    [14] Wadhams T P, Mundy E, MacLean M G, et al. Ground test studies of the HIFiRE-1 transition experiment. Part 1: Experimental results[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1134-1148.
    [15] MacLean M, Wadhams T, Holden M, et al. Ground test studies of the HIFiRE-1 transition experiment. Part 2: Computational analysis[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1149-1164.
    [16] Alba C R, Johnson H B, Bartkowicz M D, et al. Boundary-layer stability calculations for the HIFiRE-1 transition experiment[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1125-1133.
    [17] Willems S, Gülhan A, Juliano T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack: AIAA Paper 2014-0428[R].[S.l.]: AIAA, 2014.
    [18] Juliano T J, Kimmel R L. HIFiRE-1 surface pressure fluctuations from high Reynolds, high angle ground test: AIAA Paper 2014-0429[R].[S.l.]: AIAA, 2014.
    [19] 涂国华, 万兵兵, 陈坚强, 等. MF-1 钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学: 物理学, 力学, 天文学, 2019, 49(12): 114-124.Tu Guohua, Wan Bingbing, Chen Jianqiang, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(12): 114-124.
    [20] Zhao J, Liu S, Zhao L, et al. Numerical study of total temperature effect on hypersonic boundary layer transition[J]. Physics of Fluids, 2019, 31(11): 114105.
    [21] 刘智勇, 禹旻, 杨武兵. 温度对高速平板边界层转捩雷诺数的影响[J]. 空气动力学学报, 2020, 38(2): 308-315.Liu Zhiyong, Yu Min, Yang Wubing. Effect of temperature on the transitional Reynolds number of high-speed planar boundary layer[J]. Acta Aerodynamica Sinica, 2020, 38(2): 308-315.
    [22] Liu Z, Yang W, Shen Q. Investigation on correlation between wind tunnel and flight test data for boundary layer transition: AIAA Paper 2016-3980[R].[S.l.]: AIAA, 2016.
    [23] 马祎蕾, 余平, 姚世勇. 壁温对钝三角翼边界层稳定性及转捩影响[J]. 空气动力学学报, 2020, 38(6): 1017-1026.Ma Yilei, Yu Ping, Yao Shiyong. Effect of wall temperature on stability and transition of hypersonic boundary layer on a blunt delta wing[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1017-1026.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚世勇,段毅,徐聪,李思怡,杨攀,段会申.壁温比对高速钝锥边界层转捩天地差异的影响研究[J].南京航空航天大学学报,2022,54(4):592-598

复制
分享
文章指标
  • 点击次数:1592
  • 下载次数: 2720
  • HTML阅读次数: 395
  • 引用次数: 0
历史
  • 收稿日期:2022-06-15
  • 最后修改日期:2022-07-19
  • 在线发布日期: 2022-08-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!