竖直矩形通道内超临界正癸烷振荡特性的大涡模拟
CSTR:
作者:
作者单位:

1.西北工业大学航海学院,西安 710072;2.太原理工大学电气与动力工程学院,太原 030024;3.隆德大学能源科学系,隆德SE-22100;4.浙大城市学院机械电子工程学系,杭州 310015

通讯作者:

谢公南,男,教授,博士生导师,E-mail: xgn@nwpu.edu.cn。

中图分类号:

V211

基金项目:

国家自然科学基金(51676163);西北工业大学博士论文创新基金(CX202029)。


Large Eddy Simulation of Oscillation Characteristics of Supercritical n-Decane in Vertical Rectangular Channel
Author:
Affiliation:

1.School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;2.College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;3.Department of Energy Sciences, Lund University, Lund SE-22100, Sweden;4.Department of Mechatronics Engineering, Zhejiang University City College, Hangzhou 310015, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    基于超临界碳氢燃料的主动再生冷却被认为是超燃冲压发动机最具前景的热管理方法之一。本研究利用大涡模拟数值方法探究矩形通道内超临界碳氢燃料初始流动传热的瞬态变化规律的,证实了超临界振荡效应的存在,即温度和速度分布波动性较强。通过监测10-4 s时间尺度下的速度变化规律,发现振荡有着近似三角函数式的频率和振幅。冷却通道被加热初期时,近加热壁面处热流体在浮升力作用下流向低温区域;随着流体温度逐渐接近其拟临界值,其物性参数发生剧烈变化,摩擦因数和流体动能呈现振荡性,在远离加热壁面的位置诱导出了强化涡;随着时间推移,强化涡开始向加热壁面移动,伴随着低温流体冲击热壁面,使其热输运得到强化。

    Abstract:

    Active generative cooling based on supercritical hydrocarbon fuel is regarded as one of the most promising methods for scramjet thermal management. A large eddy simulation method is used to explore the transient change law of the initial flow, and heat transfer behaviors of supercritical hydrocarbon fuel is in rectangular channels. An oscillation effect can be proved in the convective heat transfer process, i.e., the temperature and velocity distributions fluctuate strongly. By monitoring the velocity variation rule of 10-4 s time scale, the approximate trigonometric frequency and amplitude are present in this oscillation. At the initial heating condition, the high-temperature fluid, which is close to the heated wall, flows into the low-temperature region under the effect of buoyancy force. As the fluid temperature gradually reaches the pseudo-critical value, its thermo-physical properties change dramatically. The friction factor oscillates as well as the fluid kinetic energy. Correspondingly, the enhanced vortex is induced away from the heated wall. Over time, the enhanced vortex begins to move to the heated wall and the low-temperature fluid impinges on the wall. Consequently, the thermal transport is enhanced.

    参考文献
    [1] Bonifacio S, Borreca S, Ranuzzi G, et al. A scramjet preliminary aerothermodynamic design code [C]//Proceedings of 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra: AIAA,2006:7910.
    [2] Fischer R, Bouquet C, Thebault J, et al. Composite technologies development status for scramjet [C]//Proceedings of 13th AIAA/CIRA International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy: AIAA,2005:3431.
    [3] Tsujikawa Y, Northam GB. Effects of hydrogen active cooling on scramjet engine performance [J]. International Journal of Hydrogen Energy, 1996, 21: 299-304.
    [4] Gascoin N, Gillard P, Bernard S, et al. Pyrolysis of supercritical endothermic fuel: Evaluation for active cooling instrumentation[J].International Journal of Chemical Reactor Engineering, 2008.DOI:10.2022/1542-6580.1671.
    [5] Edwards T. Liquid fuels and propellants for aerospace propulsion:1903—2003[J]. AIAA Journal of Propulsion and Power, 2003, 19:1089-1107.
    [6] Zhu Jianqin, Zhao Chaofan, Cheng Zeyuan, et al. Experimental investigation on heat transfer of n-decane in a vertical square tube under supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2019, 138: 631-639.
    [7] Pu Hang, Li Sufeng, Dong Ming, et al. Convective heat transfer and ?ow resistance characteristics of supercritical pressure hydrocarbon fuel in a horizontal rectangular mini-channel[J]. Experimental Thermal and Fluid Science, 2019, 108: 39-53.
    [8] Lei Zhiliang, Liu Bin, Huang Qin, et al. Thermal cracking characteristics of n-decane in the rectangular and circular tubes[J]. Chinese Journal of Chemical Engineering, 2019, 27: 2876-2883.
    [9] Li Fuqiang, Li Zaizheng, Jing Kai, et al. Thermal cracking of endothermic hydrocarbon fuel in regenerative cooling channels with di?erent geometric structures[J]. Energy and Fuels, 2018, 32: 6524-6534.
    [10] Hou Lingyun, Dong Ning, Sun Dapeng, et al. Heat transfer and thermal cracking behavior of hydrocarbon fuel[J]. Fuel, 2013, 103: 1132-1137.
    [11] 张斌, 张春本, 邓宏武, 等. 超临界压力下碳氢燃料在竖直圆管内换热特性[J]. 航空动力学报, 2012, 27(3): 595-603.Zhang Bin, Zhang Chunben, Deng Hongwu, et al. Heat transfer characteristics of hydrocarbon fuel at supercritical pressure in vertical circular tubes[J]. Journal of Aerospace Power, 2012, 27(3): 595-603.
    [12] Li Yong, Xie Gongnan, Sunden B A. Effect of wall conduction on the heat transfer characteristics of supercritical n-decane in a horizontal rectangular pipe for cooling of a scramjet combustor[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2020.DOI:10.1108/HFF-02-2020-D115.
    [13] Sun Xing, Meng Hua, Zheng Yao. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358.
    [14] Hu Jiangyu, Zhou Jin, Wang Ning, et al. Numerical study of buoyancy’s e?ect on ?ow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079.
    [15] 程泽源, 朱剑琴, 李海旺. 数值圆管内超临界碳氢燃料换热恶化的直径效应[J]. 航空学报, 2016, 37(10): 2941-2951.Cheng Zeyuan, Zhu Jianqin, Li Haiwang. Diameter effect on heat transfer deterioration of supercritical hydrocarbon fuel in vertical round tubes[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2941-2951.
    [16] Li Na, Huang Zaizing, Bu Yifan, et al. Effects of channel geometries and acceleration on heat transfer of hydrocarbon fuel[J]. AIAA Journal of Thermophysics and Heat Transfer, 2020, 34: 1-9.
    [17] Li Yong, Sun Feng, Xie Gongnan, et al. Improved thermal performance of cooling channels with truncated ribs for a scramjet combustor fueled by endothermic hydrocarbon[J]. Applied Thermal Engineering, 2018, 142: 695-708.
    [18] Li Yong, Xie Gongnan, Sunden B. Flow and thermal performance of supercritical n-decane in double-layer channels for regenerative cooling of a scramjet combustor[J]. Applied Thermal Engineering, 2020, 180: 115695.
    [19] Li Yong, Xie Gongnan, Zhang Yingchun, et al. Flow characteristics and heat transfer of supercritical n-decane in novel nested channels for scramjet regenerative cooling[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120836.
    [20] 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69(S1): 20-25.Sun Xing, Xu Keke, Meng Hua. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube[J]. CIESC Journal, 2018, 69(S1): 20-25.
    [21] 黄世璋, 朱强华, 高效伟. 碳氢燃料在波纹管内的超临界裂解传热特性[J]. 推进技术, 2019, 40(1): 95-106.Huang Shizhang, Zhu Qianghua, Gao Xiaowei. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology, 2019, 40(1): 95-106.
    [22] 胡雪烈, 寇志海, 李彬彬,等. 超临界碳氢燃料流动换热不稳定性研究综述[J]. 飞航导弹, 2021, 5: 26-31.Hu Xuelie, Kou Zhihai, Li Binbin, et al. A review on flow and heat transfer instability of supercritical hydrocarbon fuels[J]. Aerodynamic Missile Journal, 2021, 5: 26-31.
    [23] 王彦红, 李素芬, 东明,等. 超临界压力航空煤油热声振荡与传热恶化实验研究[J]. 推进技术, 2016, 37(3): 401-410.Wang Yanhong, Li Sufen, Dong Ming, et al. Experimental studies on thermoacoustic oscillation and heat transfer deterioration of aviation kerosene under supercritical pressure[J]. Journal of Propulsion Technology, 2016, 37(3): 401-410.
    [24] 王彦红, 李素芬. 超临界压力下航空煤油热声振荡的特性和预测[J]. 化工学报, 2018, 69(4): 1412-1418.Wang Yanhong, Li Sufen. Characteristic and prediction of thermo-acoustic oscillation of aviation kerosene under supercritical pressures[J]. CIESC Journal, 2018, 69(4): 1412-1418.
    [25] 严俊杰, 赵然, 闫帅, 等. 超临界压力下竖直圆管内正癸烷对流换热不稳定性实验[J]. 推进技术, 2017, 38(2): 450-456.Yan Junjie, Zhao Ran, Yan Shuai, et al. Experiment on flow and convective heat transfer instability of n-decane in a vertical tube at supercritical pressures [J]. Journal of Propulsion Technology, 2017, 38(2): 450-456.
    [26] Sun Xing, Meng Hua. Large eddy simulations and analyses of hydrocarbon fuel heat transfer in vertical upward flows at supercritical pressures[J].International Journal of Heat and Mass Transfer, 2021, 170: 120988.
    [27] Sun Feng, Li Xin, Boetcher SKS, et al. Inhomogeneous behavior of supercritical hydrocarbon fuel flow in a regenerative cooling channel for a scramjet engine[J]. Aerospace Science and Technology, 2021, 117: 106901.
    [28] Pizzarelli M. The status of the research on the heat transfer deterioration in supercritical fluids: A review[J]. International Communications in Heat and Mass Transfer, 2018, 95: 132-138.
    [29] Sun Feng, Li Yong, Sunden B, et al. The transport and thermodynamic characteristics of thermally oscillating phenomena in a buoyancy-driven supercritical fuel flow[J]. International Journal of Thermal Sciences, 2021, 159: 106550.
    [30] 陈玮玮.管内超临界流动传热特性及应用研究[D]. 南京:南京航空航天大学, 2016.Chen Weiwei. Research on the heat transfer characteristics and application of in-tube supercritical flow [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [31] Wagner C D, Hüttl H , Sagaut P. Large-eddy simulation for acoustics[M].Combridge: Cambridge University Press, 2007.
    [32] Tao Zhi, Cheng Zeyuan, Zhu Jianqin, et al. Large eddy simulation of supercritical heat transfer to hydrocarbon fuel[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1251-1263.
    [33] Kim T H, Kwon J G, Kim M H, et al. Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube[J]. Experimental Thermal and Fluid Science, 2018, 92: 222-230.
    [34] Chu Xu, Laurien E. Flow strati?cation of supercritical CO2 in a heated horizontal pipe[J]. The Journal of Supercritical Fluids, 2016, 116: 172-189.
    [35] Thiede R G, RICCIUS J R , Reese S. Life prediction of rocket combustion-chamber-type thermomechanical fatigue panels[J].Journal of Propulsion and Power, 2017, 33: 1529-1542.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李勇,孙丰,谢公南,曹桢,傅佳宏.竖直矩形通道内超临界正癸烷振荡特性的大涡模拟[J].南京航空航天大学学报,2022,54(2):281-289

复制
分享
文章指标
  • 点击次数:852
  • 下载次数: 2702
  • HTML阅读次数: 469
  • 引用次数: 0
历史
  • 收稿日期:2021-08-11
  • 最后修改日期:2021-10-20
  • 在线发布日期: 2022-04-05
文章二维码
您是第6920648位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!