面向飞行机械臂的实时目标检测与定位算法
作者:
作者单位:

1.南京航空航天大学机电学院,南京210016;2.浙江大学流体动力与机电系统国家重点实验室,杭州310027;3.中国兵器工业集团航空弹药研究院有限公司,哈尔滨 150046

作者简介:

通讯作者:

王尧尧,男,博士,副教授, E-mail:yywang_cmee@nuaa.edu.cn。

中图分类号:

TP391

基金项目:

国家自然科学基金 (52175097);南京航空航天大学基本科研业务费(NS2021033)。


Real-Time Object Detection and Location Algorithm for Aerial Manipulator
Author:
Affiliation:

1.College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;3.Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150046, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    飞行机械臂要完成自主抓取的任务,对目标物的识别与定位尤为关键。当前飞行机械臂视觉识别算法多采用传统的特征提取等方法。为提升目标物识别及定位的精度和效率,本文设计了一种基于YOLOv5深度学习目标检测算法和RGB-D传感器的视觉识别与定位算法,该算法可以实时检测目标物并对其位姿进行估计,为飞行机械臂的抓取工作服务。同时针对深度学习算法计算量庞大,在嵌入式端无法实现高性能实时检测的问题,引入了模型量化技术优化算法,大幅提升算法推理速度。本文介绍了算法的整体框架及实现过程,利用COCO数据集和动作捕捉系统分别验证了目标检测和位姿估计部分算法的有效性。

    Abstract:

    To accomplish the task of aerial manipulator’s autonomous grasping, it is very important to recognize and locate the object. At present, most of the recognition algorithms of aerial manipulators use traditional feature extraction methods. In order to improve the accuracy and efficiency of object recognition and positioning, this paper designs a visual recognition and positioning algorithm based on YOLOv5 deep learning object detection algorithm and RGB-D sensor. The algorithm can detect the object in real-time and estimate its pose, which serves for the grasping task of aerial manipulator. At the same time, aiming at the problems that the deep learning algorithm has a huge amount of calculation and cannot achieve high-performance real-time detection in the embedded system, model quantization is introduced to optimize the algorithm, which can greatly improve the processing speed of the algorithm. This paper introduces the overall framework and implementation process of the algorithm and verifies the effectiveness of some algorithms of object detection and pose estimation by using the COCO dataset and motion capture system.

    参考文献
    相似文献
    引证文献
引用本文

张睿,王尧尧,段雅琦,陈柏.面向飞行机械臂的实时目标检测与定位算法[J].南京航空航天大学学报,2022,54(1):27-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-31
  • 最后修改日期:2021-11-16
  • 录用日期:
  • 在线发布日期: 2022-02-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司