基于人工神经网络的微重力流动冷凝换热预测
作者:
作者单位:

1.上海海事大学航运仿真技术教育部工程研究中心,上海 201306;2.南京航空航天大学航空学院飞行器环境控制与生命保障工业和信息化部重点实验室,南京 210016

作者简介:

通讯作者:

彭浩,男,副教授,E-mail: hpeng@shmtu.edu.cn。

中图分类号:

TK124

基金项目:

上海市自然科学基金(19ZR1422300) 资助项目。


Prediction of Flow Condensation Heat Transfer Under Microgravity Based on Artificial Neural Network
Author:
Affiliation:

1.Engineering Research Center of Shipping Simulation (Ministry of Education), Shanghai Maritime University, Shanghai 201306,China;2.Key Laboratory of Aircraft Environmental Control and Life Support Industry and Information Technology,College of Aerospace Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微重力条件下管内流动冷凝换热系数是空间热交换器设计的基础依据,但其实验数据稀缺,故有必要建立精确的预测模型。文中提出了一种基于人工神经网络的微重力下管内流动冷凝换热预测模型。选取误差反向传播(Back propagation, BP)和径向基函数(Radial basis function RBF)两种神经网络,以水力直径、饱和温度、质流密度、干度及与工质热物性有关的参数作为网络输入,冷凝换热系数作为网络输出。结果显示,BP神经网络预测的均方根误差为237、平均绝对百分误差为4.32%;RBF神经网络预测的均方根误差为165、平均绝对百分误差为2.35%。相对于BP神经网络,RBF神经网络精度更高。基于RBF神经网络的微重力下管内流动冷凝换热模型预测值与94%的实验值和数值模拟结果的相对误差在±10%以内。

    Abstract:

    Heat transfer coefficients of flow condensation under microgravity are the basis for design of aerospace heat exchanger, but their experimental data are scarce; thus it is necessary to establish an accurate prediction model. In the present study, a prediction model of flow condensation heat transfer under microgravity is established based on artificial neural network. Two kinds of neural networks, i.e. back propagation (BP) and radial basis function (RBF) are adopted; the hydraulic diameter, saturation temperature, mass flux, vapor quality and parameter related to fluid thermophysical properties are used as network inputs, while the condensation heat transfer coefficient is taken as network output. The results show that for BP neural network model, the root mean square error (RMSE) and mean absolute percent error (MAPE) are 237 and 4.32%, respectively; while for RBF neural network model, RMSE and MAPE are 165 and 2.35%, respectively. Compared with BP neural network, RBF neural network has the higher accuracy. The flow condensation heat transfer cofficients predicted by RBF neural network model agree with 94% of experimental data and numerical results within the deviation of ±10%.

    参考文献
    相似文献
    引证文献
引用本文

陈亚琴,彭浩,冯诗愚.基于人工神经网络的微重力流动冷凝换热预测[J].南京航空航天大学学报,2021,53(6):989-995

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-12
  • 最后修改日期:2021-05-10
  • 录用日期:
  • 在线发布日期: 2021-12-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司