基于步行周期聚类的视频行人重识别关键帧提取算法
作者:
作者单位:

南京师范大学计算机与电子信息学院/人工智能学院, 南京 210023

作者简介:

通讯作者:

赵斌,男,博士,副教授, E-mail:zhaobin@njnu.edu.cn。

中图分类号:

TP37

基金项目:

国家自然科学基金(41971343)资助项目。


Key Frame Extraction Algorithm for Video-Based Person Re-identification Based on Walking Cycle Clustering
Author:
Affiliation:

School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频行人重识别旨在不同摄像头拍摄的视频中检索特定行人。但是,它面临着数据量庞大和视频数据存在时间冗余的问题,即视频数据耗费大量的存储空间且不同帧之间存在极强的相关性。因此,使用所有的帧进行识别会带来查询效率的下降,而且视频中大量的干扰和噪声也会给准确率带来不利影响。本文提出了基于步行周期聚类的视频行人重识别关键帧提取算法,首先利用行人步行时双脚距离变化的周期性规律提取候选步行周期,然后利用聚类的方法从候选步行周期中选出关键步行周期作为关键帧。最后,将该算法应用在视频行人重识别中,仅使用关键帧的信息进行识别以减少时间冗余的影响,从而提高准确率,并且在查询前对视频进行处理,减少视频数据量以提高查询效率。在视频行人重识别数据集MARS和DukeMTMC-VideoReID上的实验表明,本文算法能够减少59%~82%的视频数据量,并且累积匹配曲线Rank-1提高了1.1%~1.4%,平均精度均值提高了0.2%~5%。

    Abstract:

    Video-based person re-identification aims to retrieve specific pedestrians from videos taken by different cameras. However, it faces the problem of huge data volume and time redundancy of video data, that is, video data consume a lot of storage space and have strong correlation between different frames. Using all frames for identification will reduce the query efficiency, and the interference and noise in the video will also adversely affect the accuracy. In order to solve such problems, this paper proposes a key frame extraction algorithm for video-based person re-identification based on walking cycle clustering. Firstly, the algorithm extracts the candidate walking cycle by using the periodicity of the distance between feet of pedestrians. Then, it selects the key walking cycle as the key frame from the candidate walking cycle by clustering. Interference and noise are removed and only key frame information is used for identification to reduce the impact of time redundancy and improve accuracy. Finally, the algorithm is applied to video-based person re-identification, and the data will be processed before querying to reduce the storage space and to improve the query efficiency. Experimental results on MARS and DukeMTMC-VideoReID datasets show that the algorithm can reduce storages space by 59%—82%, the cumulative match characteristic Rank-1 is improved by 1.1%—1.4% and the mean average precision is improved by 0.2%—5%.

    参考文献
    相似文献
    引证文献
引用本文

李梦静,吉根林,赵斌.基于步行周期聚类的视频行人重识别关键帧提取算法[J].南京航空航天大学学报,2021,53(5):780-788

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-11
  • 最后修改日期:2021-01-09
  • 录用日期:
  • 在线发布日期: 2021-10-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司