零泊松比蜂窝结构一维变形行为
CSTR:
作者:
作者单位:

中国飞机强度研究所计算结构技术与仿真中心,西安 710065

通讯作者:

艾森,男,硕士,工程师,E-mail:aisen.w@163.com。

中图分类号:

V214.6

基金项目:

装备预研联合基金(6141B05030602)资助项目。


One-Dimensional Deformation Behavior of a Honeycomb Structure with Zero Poisson’s Ratio
Author:
Affiliation:

Computational Structure Technique & Simulation Center, Aircraft Strength Research Institute of China, Xi’an 710065,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为满足柔性蒙皮的变形需求,针对一种适用于柔性蒙皮的零泊松比蜂窝结构开展了一维变形行为的研究。首先通过考虑蜂窝胞壁轴向变形及弯曲变形,基于能量法建立了零泊松比蜂窝结构的等效弹性模量理论模型,并分别应用数值分析和试验方法验证了理论模型的正确性。然后分别以铝合金和钢材为基体材料,利用数值分析方法进一步分析了零泊松比蜂窝结构的非线性变形行为,并获得了蜂窝结构的变形量与残余应变的关系。结果表明:蜂窝变形过程中的力学行为与结构的几何参数以及母材的选择有关。因此,可以通过改变蜂窝结构的几何参数,实现蜂窝结构驱动力及残余应变的调节;同时,在选择基体材料时,为兼顾“面内”刚度和“面外”承载能力,不仅应该选用杨氏模量小的材料,减少其驱动力,还应该选用弹性段大的材料,减小残余变形。

    Abstract:

    Tensile mechanical properties of a zero Poisson’s ratio (ZPR) honeycomb structure suitable for morphing application is studied. A theoretical method for calculating in-plane tensile modulus of ZPR cellular structures is proposed based on energy method, and the impacts of the unit cell geometrical configurations on in-plane tensile modulus is studied systematically based on finite element (FE) simulation. Then, experimental tests validate the feasibility and effectiveness of the theoretical and FE analysis. In addition, to describe the nonlinear deformation regularity of ZPR cellular structures, FE simulation with using aluminum alloy and steel as the workpiece is built and the relationship between the deformation and the residual strain is studied. Results show that these cell geometric parameters and material performance provide different contributions to the effective mechanical properties of ZPR cellular structures, which suggests that the in-plane mechanics of ZPR cellular structures can be manipulated by designing cell geometrical parameters and material selection. Furthermore,when selecting the base material, in order to take into account both the “in-plane” stiffness and the “out-of-plane” load-bearing capacity, not only materials with a small Young’s modulus should be selected to reduce its driving force, but also materials with a large elastic section should be selected to reduce residual deformation.

    图1 零泊松比蜂窝结构的几何模型Fig.1 Geometric model of the honeycomb structure with zero Poisson’s ratio
    图2 零泊松比蜂窝面内拉伸模量的计算模型Fig.2 Calculation model of the in-plane tensile modulus of the honeycomb structure with zero Poisson’s ratio
    图3 零泊松比蜂窝结构有限元模型Fig.3 Finite element model of the honeycomb structure with zero Poisson’s ratio
    图4 不同胞壁厚度蜂窝结构对单胞等效弹性模量的影响Fig.4 Influence of honeycomb structure with different cell wall thickness on unit cell equivalent elastic modulus
    图5 不同垂直壁长度蜂窝结构对单胞等效弹性模量的影响Fig.5 Influence of honeycomb structure with different vertical wall length on unit cell equivalent elastic modulus
    图6 蜂窝结构拉伸试验结果和应力-应变曲线Fig.6 Tensile test results and stress-strain curves of honeycomb structure
    图7 某型铝合金和钢材的真实应力-应变曲线Fig.7 True stress-strain curves of a certain type of aluminum alloy and steel
    图8 非线性条件下蜂窝结构力学特性计算模型Fig.8 Calculating model of mechanical characteristics of honeycomb structure under nonlinear conditions
    图9 铝蜂窝结构在产生5%变形时,不同参数蜂窝结构的残余应变Fig.9 Residual strain of the honeycomb structure with different parameters when the aluminum honeycomb structure is deformed by 5%
    图10 不同变形条件下,铝蜂窝结构应力-应变曲线Fig.10 Stress-strain curves of aluminum honeycomb structure under different deformation conditions
    图11 不同变形条件下,钢蜂窝结构的应力-应变曲线Fig.11 Stress-strain curves of steel honeycomb structure under different deformation conditions
    图12 蜂窝结构应变与残余应变的关系Fig.12 Relationship between the strain of the honeycomb structure and the residual strain
    参考文献
    [1] 段富海, 初雨田, 关文卿,等.变形机翼的关键技术研究现状及其展望[J].空军预警学院学报,2020,34(6): 203-209.
    [2] 李小飞, 张梦杰, 王文娟,等.变弯度机翼技术发展研究[J].航空科学技术,2020,21(2): 12-24.
    [3] 聂瑞.变体机翼结构关键技术研究[D].南京:南京航空航天大学,2018.
    [4] 聂瑞,裘进浩,季宏丽. 变体机翼单向变形柔性蒙皮理论与实验研究[J].科学技术与工程,2017,17(11):115-121.
    [5] 尹维龙. 可变后缘弯度机翼柔性蒙皮的刚度需求分析[J].中国科学:技术科学,2010,40(9): 1090-1094.
    [6] KIKUTA M T. Mechanical properties of candidate materials for morphing wings[D]. Virginia: Virginia Tech, 2003.
    [7] OLYMPIO K R, GANDHI F. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17): 1737-1753.
    [8] ALDERSON A, ALDERSON K L, CHIRIMA G, et al. The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs[J]. Composites Science and Technology, 2010, 70(7): 1034-1041.
    [9] HUANG J, ZHANG Q, SCARPA F, et al. Bending and benchmark of zero Poisson’s ratio cellular structures[J]. Composite Structures, 2016, 152: 729-736.
    [10] GIBSON L J, ASHBY M F. Cellular solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1997.
    [11] GONG X, HUANG J, SCARPA F, et al. Zero Poisson’s ratio cellular structure for two-dimensional morphing applications[J]. Composite Structures, 2015, 134(15): 384-392.
    [12] HUANG J, GONG X, ZHANG Q, et al. In-plane mechanics of a novel zero Poisson’s ratio honeycomb core[J]. Composites Part B Engineering, 2015, 89(15): 67-76.
    [13] LIU W, LI H, YANG Z, et al. Mechanics of a novel cellular structure for morphing applications[J]. Aerospace Science and Technology, 2019, 95: 1-2.
    [14] LIU W, LI H, YANG Z, et al. In-plane mechanics of a novel cellular structure for multiple morphing applications[J]. Composite Structures, 2019, 207: 598-611.
    [15] CHEN D H. Bending deformation of honeycomb consisting of regular hexagonal cells[J]. Composite Structures, 2011, 93(2): 736-746.
    [16] 陈金金.适用于变体机翼的胞状柔性蒙皮研究[D]. 南京:南京航空航天大学,2014.
    [17] 鲁超, 李永新, 董二宝,等. 零泊松比蜂窝芯等效弹性模量研究[J].材料工程,2013(12): 80-84.
    [18] 刘卫东, 李虹林. 零泊松比手风琴蜂窝等效模量[J]. 固体力学学报, 2018, 39(1): 100-112.
    [19] NAILEN R. Roark’s formulas for stress and strain[M]. New York: McGraw-Hill, 2003.
    [20] RUBERT E A, WOODS B K S, LEE K, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems & Structures, 2010, 21(17): 1699-1717.
    [21] LIRA C, SCARPA F, TAI Y H, et al. Transverse shear modulus of SILICOMB cellular structures[J]. Composites Science and Technology, 2011, 71(9):1236-1241.
    [22] 石庆华, 尹维龙. 大变形蜂窝结构的几何非线性建模与力学分析[C]//第二十一届全国复合材料学术会议(NCCM-21).呼和浩特:[s.n.], 2020.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

艾森,郭瑜超,聂小华,常亮.零泊松比蜂窝结构一维变形行为[J].南京航空航天大学学报,2021,53(4):629-636

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-03
  • 最后修改日期:2021-05-07
  • 在线发布日期: 2021-08-05
文章二维码
您是第6562380位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!