基于Simulink的某型无人直升机舰面悬停特性分析
CSTR:
作者:
作者单位:

南京航空航天大学航空学院,南京 210016

通讯作者:

王华明,男,教授, E-mail: hm_wang@nuaa.edu.cn。

中图分类号:

V212.4


Analysis of Shipboard Hovering Characteristics of Unmanned Helicopter Based on Simulink
Author:
Affiliation:

College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    应用Matlab/Simulink对单旋翼带尾桨直升机在舰船尾流场中悬停时的平衡特性进行建模和仿真分析。首先采用CFD软件计算SFS2舰在不同风速和风向下尾部甲板上方的流场。然后将其与旋翼流场相耦合,在Simulink软件中建立单旋翼带尾桨直升机舰面起降飞行动力学模型,应用Simulink线性分析工具箱,对某型无人直升机在SFS2舰尾部甲板上方悬停时的平衡特性进行了仿真分析。最后总结了舰面流场对该无人直升机近舰面悬停时操纵量和姿态角的影响。

    Abstract:

    The balance characteristics of single-rotor helicopter with tail rotor hovering in ship airwake are modeled and simulated by using Matlab/Simulink. Firstly, the CFD software is used to calculate the airwake above the stern deck of the SFS2 ship at different wind speeds and directions. Then, the airwake is coupled with the rotor flow field to establish the flight dynamics model of helicopter shipboard operations in Simulink software. By using Simulink linear analysis tool, the balance characteristics of an unmanned helicopter hovering above the stern deck of the SFS2 ship are simulated and analyzed. Finally, the influence of the ship airwake on the control and attitude angle of the unmanned helicopter hovering near the ship surface is summarized.

    表 2 Table 2 TIG welding process parameters
    表 1 旋翼和尾桨的主要参数Table 1 Main parameters of rotor and tail rotor
    表 4 Table 4 Tensile properties of TIG welded joint
    图1 Schematic diagram of joint tensile specimenFig.1
    图2 Weld appearanceFig.2
    图3 Penetrant inspection of joint surface morphologyFig.3
    图4 X-ray examination negative image of TIG welding jointFig.4
    图5 Microstructure of TC2 titanium alloyFig.5
    图6 Macrostructure of TC2 TIG welding jointFig.6
    图7 Microstructure of TIG welding jointFig.7
    图8 Schematic diagram of cooling rate in different zones of TC2 by TIG weldingFig.8
    图9 Microhardness curve of TIG welding jointFig.9
    图10 Fracture position of tensile specimenFig.10
    图11 Tensile fracture morphologyFig.11
    图1 SFS2舰船外形数模Fig.1 Mathematic model of SFS2 ship contour
    图2 计算域网格划分Fig.2 Grid division of computing domain
    图3 舰船纵向对称面内X方向速度云图Fig.3 Velocity cloud chart in X-direction in longitudinal symmetry plane of ship
    图4 机库后方15 m处横截面内X方向速度云图Fig.4 Velocity cloud in X-direction in cross section 15 m behind the hangar
    图5 机库后方15 m处横截面内Z方向速度云图Fig.5 Velocity cloud in Z-direction in cross section 15 m behind the hangar
    图6 25%甲板长度X方向速度计算结果对比Fig.6 Comparison of calculation results of X-direction velocity at 25% deck length
    图7 X方向和Z方向节点速度对比Fig.7 Comparison of node specd in X- and Z- directions
    图8 建模坐标系Fig.8 Coordinate systems of modeling
    图9 直升机舰面起降飞行动力学模型Simulink块图Fig.9 Simulink block diagram of flight dynamics model of helicopter shipboard operations
    图10 旋翼模型Simulink块图Fig.10 Simulink block diagram of main rotor model
    图11 旋翼总距随风向和风速变化曲线Fig.11 Variation curves of rotor collective pitch with wind direction and wind speed
    图12 横向周期变距随风向和风速变化曲线Fig.12 Variation curves of lateral cyclic pitch with wind direction and wind speed
    图13 滚转角随风向和风速变化曲线Fig.13 Variation curves of roll angle with wind direction and wind speed
    图14 纵向周期变距随风向和风速变化曲线Fig.14 Variation curves of longitudinal cyclic pitch angle with wind direction and wind speed
    图15 俯仰角随风向和风速变化曲线Fig.15 Variation curves of pitch angle with wind direction and wind speed
    图16 尾桨总距随风向和风速变化曲线Fig.16 Variation curves of tail rotor collective pitch with wind direction and wind speed
    表 3 Table 3 Results of chemical analysis
    参考文献
    引证文献
引用本文

唐宏清,王华明.基于Simulink的某型无人直升机舰面悬停特性分析[J].南京航空航天大学学报,2021,53(3):408-414

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-08
  • 最后修改日期:2021-05-20
  • 在线发布日期: 2021-06-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!