电力作动系统容错电机拓扑结构与控制策略
CSTR:
作者:
作者单位:

南京航空航天大学自动化学院,南京 211106

通讯作者:

王宇,男,副教授,E-mail: wanghaohao@nuaa.edu.cn。

中图分类号:

TM351

基金项目:

国家自然科学基金(51977107)资助项目。


Topologies and Control Schemes of Fault-Tolerant Machines for Electrical Actuator Systems
Author:
Affiliation:

College of Automation Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    容错电机以其可靠性高、容错能力强以及恶劣环境工作能力强等优点得到了国内外电机领域广泛关注,其工作原理、拓扑结构、电磁性能和控制策略等已有广泛而深入的研究,研究结果表明该类电机非常适合应用于全电/多电飞机电力作动系统。本文从拓扑结构和控制算法两大方面对电力作动系统用容错电机的关键技术进行分析和总结。在拓扑结构方面,横向比较了每种原型电机引入容错设计后对原有电磁性能的影响,纵向归纳了电机容错设计的通用设计方法和一般规律。在控制策略方面,分析了基于电流矢量重构技术和基于电压矢量重构技术两大类方法的内在联系与优缺点,提出了提高转速动态的容错电机转矩冲量平衡控制,并对代表性拓扑结构和容错算法进行了仿真和实验比较。最后展望了容错电机的研究前景与应用拓展。

    Abstract:

    Fault-tolerant machines have attracted extensive attention in the field of machines all over the world for their high reliability, strong fault tolerance and strong ability for operation in harsh environments, therefore, deep researches are carried out focusing on their working principles, topologies, electromagnetic properties and control strategies. It can be found that this type of machine is very suitable for all-electric/more-electric aircraft electrical actuator systems. This paper analyzes and summarizes the key technologies of fault-tolerant machines for electrical actuator system from two aspects: Topology and control strategy. In terms of topology, the effects of each prototype machine on the original electromagnetic performance after introducing fault-tolerant design are compared, and the general design method and general law of fault-tolerant design of the machine are summarized. In terms of control strategy, the inside relations, advantages and disadvantages of two methods based on current vector reconstruction and voltage vector reconstruction are analyzed, furthermore, the torque impulse balance control of fault-tolerant machine for the speed performance improvement is investigated. The simulation and experimental verification are carried out for the classical topology and fault-tolerant algorithm. This paper summarizes the research prospect and application development of fault-tolerant machines, which offers references for the theoretical research and industrial application of fault-tolerant machines.

    图1 非交叠集中式电枢绕组[3]Fig.1 Non-overlapping concentrated windings[3]
    图2 电力作动系统用容错电机分类图Fig.2 Classification of fault-tolerant machines for electrical actuator system
    图3 12/8开关磁阻电机Fig.3 12/8 switched reluctance motor
    图4 开关磁阻电机功率变换器Fig.4 Power converter of switched reluctance motor
    图5 不同绕组结构开关磁阻电机[12]Fig.5 Different winding structures of switched reluctance motor[12]
    图6 非交叠集中式电枢绕组开关磁阻电机拓扑[13]Fig.6 Switched reluctance motor with non-overlapping concentrated windings[13]
    图7 非交叠集中式电枢绕组开关磁阻电机[13]Fig.7 Switched reluctance motor with non-overlapping concentrated windings[13]
    图8 容错型转子永磁式电机(表贴式)的拓扑结构Fig.8 Topology of FTSMPMM
    图9 改进型容错齿结构[23]Fig.9 Improved fault tolerant tooth structure[23]
    图10 表贴式外转子永磁容错电机[24]Fig.10 Surface mounted rotor permanent magnet fault tolerant motor[24]
    图11 模块化容错型转子永磁式电机[26]Fig.11 Modular fault tolerant rotor permanent magnet machine[26]
    图12 容错型转子永磁式电机[27]Fig.12 Fault tolerant rotor permanent magnet machine[27]
    图13 转子永磁式电机(内置式)的电枢磁场[28]Fig.13 Armature reaction magnetic flux lines of IPMM[28]
    图14 多三相内置式永磁电机[29]Fig.14 Multiple three-phase IPMM[29]
    图15 容错型转子永磁式电机(内置式)[34]Fig.15 Fault tolerant IPMM[34]
    图16 两种五相内置式永磁容错电机[35]Fig.16 Two types of five-phase fault tolerant IPMMs[35]
    图17 永磁双凸极电机[36]Fig.17 Permanent magnet doubly salient motor[36]
    图18 永磁双凸极电机(斜槽转子)[37]Fig.18 Permanent magnet doubly salient motor (skewed rotor)[37]
    图19 集中电枢绕组永磁磁通切换电机[43]Fig.19 FSPM machine with concentrated windings[43]
    图20 6/10“E”型铁芯容错型永磁磁通切换电机[44]Fig.20 6/10 E-core fault tolerant FSPM machine[44]
    图21 容错型永磁磁通切换电机(加极靴)[45]Fig.21 Fault tolerant FSPM machine (with pole shoe)[45]
    图22 4种永磁磁通切换电机[46]Fig.22 Four types of FSPM machine[46]
    图23 6种模块化结构[46]Fig.23 Six modular structures[46]
    图24 磁障宽度变化时的输出转矩和转矩脉动[46]Fig.24 Average torque and torque ripple under different flux gap opening[46]
    图25 退磁磁场磁力线[46]Fig.25 Demagnetizing flux lines[46]
    图26 转子分段式多齿结构永磁磁通切换电机结构[49]Fig.26 Multi-tooth FSPM motor with twisted rotor[49]
    图27 转子分段式结构Fig.27 Twisted rotor structure
    图28 电流传感器放置方式[53]Fig.28 Arrangement of current sensor[53]
    图29 电枢绕组缠绕方式[53]Fig.29 Winding mode of armature winding[53]
    图30 A相缺失时的电压矢量重构[62]Fig.30 Voltage vector reconstruction under phase A fault[62]
    图31 容错型磁通切换电机模型预测控制[63]Fig.31 Model predictive controlled fault-tolerant flux switching motor[63]
    图32 转矩、转速优化曲线(PI控制)[67]Fig.32 Optimization of torque and speed(PI control)[67]
    图33 转矩、转矩角和转速优化曲线(负载突变)[67]Fig.33 Optimization of the torque, torque angle and speed (load sudden change)[67]
    图34 短路故障下永磁磁通切换电机转矩冲量平衡控制框图[71]Fig.34 FDTC system with torque integral balance control method (IB-FDTC)[71]
    图35 容错型永磁电机拓扑Fig.35 Topologies of fault tolerant permanent magnet motor
    图36 容错型永磁电机拓扑几何尺寸标识Fig.36 Dimensions of fault-tolerant permanent magnet motors
    图37 容错型永磁电机永磁磁链Fig.37 PM flux linkage of fault tolerant permanent magnet motors
    图38 容错型永磁电机永磁磁链幅值Fig.38 Magnitude of PM flux linkage of fault tolerant permanent magnet motors
    图39 容错型永磁电机定位力矩Fig.39 Cogging torque of fault tolerant permanent magnet motors
    图40 容错型永磁电机定位力矩峰-峰值Fig.40 Peak to peak cogging force of fault-tolerant permanent magnet motor
    图41 容错型永磁电机自感和互感Fig.41 Self-inductance and mutual inductance of fault-tolerant permanent magnet motors
    图42 容错型永磁电机自感平均值Fig.42 Average self-inductance of fault-tolerant permanent magnet motor
    图43 容错型永磁电机互感平均值Fig.43 Average mutual inductance of fault-tolerant permanent magnet motor
    图44 容错型永磁电机互感/自感比值Fig.44 Mutual inductance/self-inductance ratio of fault-tolerant permanent magnet motor
    图45 容错型永磁电机永磁磁链/电枢电感比值Fig.45 Ratio of PM flux linkage to armature inductance of fault-tolerant permanent magnet motor
    图46 容错型永磁电机转矩-转速特性Fig.46 Torque-speed characteristics of the fault-tolerant permanent magnet motor
    图47 容错电机效率Fig.47 Efficiency of fault-tolerant machines
    图48 容错型多齿永磁磁通切换电机Fig.48 Fault tolerant multi-tooth FSPM motor
    图49 空载反电势(六相开路)[49]Fig.49 No-load back-EMF(six phases open-circuit)[49]
    图50 空载反电势(一相短路)[49]Fig.50 No-load back-EMF(one phase short-circuit)[49]
    图51 短路电流[49]Fig.51 Short-circuit current[49]
    图52 DTC与FDTC实验结果[71]Fig.52 Experimental results for DTC and FDTC[71]
    图53 FDTC与TIB-FDTC实验结果[71]Fig.53 Experimental results for FDTC and TIB-FDTC[71]
    图54 12/10永磁磁通切换电机[71]Fig.54 12/10 FSPM motor[71]
    图55 6/10永磁磁通切换电机[84]Fig.55 6/10 FSPM motor[84]
    图56 记忆电机[84]Fig.56 Memory motor[84]
    表 1 容错电机控制算法优化目标Table 1 Optimization objectives of control schemes for fault-tolerant machines
    表 2 容错型永磁电机拓扑电机参数Table 2 Parameters of fault-tolerant permanent magnet motor
    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王宇,张成糕,郝雯娟.电力作动系统容错电机拓扑结构与控制策略[J].南京航空航天大学学报,2021,53(1):53-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-15
  • 最后修改日期:2020-12-15
  • 在线发布日期: 2021-02-05
文章二维码
您是第6569089位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!