弱撞击对接机构动力学特性建模
CSTR:
作者:
作者单位:

1.南京航空航天大学航天学院,南京 211106;2.深空星表探测机构技术工业和信息化部重点实验室,南京 211106;3.航天东方红卫星有限公司,北京 100094

通讯作者:

陈传志,男,副研究员,E-mail: czchen_nuaa@163.com。

中图分类号:

V526

基金项目:

江苏省基础研究计划(自然科学基金)(BK20180417)资助项目;国家自然科学青年基金 (11902157)资助项目;载人航天领域预先研究(040202)资助项目。


Dynamic Property Modeling of Low Impact Docking Mechanism
Author:
Affiliation:

1.College of Astronautics, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2.Key Laboratory of Mechanism for Deep Space Planet Surface Exploration, Ministry of Industry and Information Technology, Nanjing 211106,China;3.Aerospace Dongfanghong Satellite Co.Ltd,Beijing 100094,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对空间飞行器捕获对接过程中复杂的多体动力学问题,鉴于弱撞击对接机构(Low impact docking mechanism, LIDM)不同于以往常见的刚性对接机构,其在对接过程中产生碰撞力远小于空间飞行器自身的重量,且自身对接环处安装有六维力传感器,因此可以将捕获过程中LIDM处产生的碰撞力等效为作用于对接环质心处的时变载荷。依据第二类拉格朗日方程的动力学建模方法,推导了各组件动力学参数的具体表达式,建立了全刚体目标系统下的多体动力学模型,并基于MATLAB实现了动力学参数的输出。用ADAMS的多体动力学模型进行仿真验证,结果表明:两者的计算验证结果证明了以拉格朗日方程建立的LIDM捕获动力学模型的正确性。为研究空间对接机构的结构优化与工程应用打下了基础。

    Abstract:

    In view of the complex multi-body dynamics problems in the process of spacecraft capture and docking, considering that the low impact docking mechanism (LIDM) is different from the common rigid docking mechanism in the past, the collision force generated in the docking process is far less than the weight of the spacecraft itself, and the docking ring is equipped with a six-dimensional force sensor. Therefore, the collision force generated at the LIDM during the capture process can be detected. The force is equivalent to the time-varying load acting on the center of mass of the docking ring. According to the dynamic modeling method of the second type Lagrange equation, the specific expressions of the dynamic parameters of each component are derived and the multi-body dynamic model of the whole rigid body target system is established, and the output of the dynamic parameters is realized based on MATLAB. The multi-body dynamics model of ADAMS is adopted for simulation verification. The simulation results show that the LIDM capture dynamics model based on Lagrange equation is correct. It lays a foundation for the study of structure optimization and engineering application of space docking mechanism.

    表 4 负载环的参数设置Table 4 Parameter setting of load ring
    表 1 弱撞击对接机构的基础构型参数Table 1 Basic configuration parameters of LIDM
    图1 弱撞击对接机构Fig.1 Low impact docking mechanism
    图2 弱撞击对接机构坐标系Fig.2 Coordinate system of low impact docking mechanism
    图3 结构简图Fig.3 Structure diagram
    图4 驱动臂坐标系简图Fig.4 Driving arm coordinate system diagram
    图5 各驱动臂的驱动力大小Fig.5 Driving force of each driving arm
    图6 ADAMS虚拟样机Fig.6 ADAMS virtual prototype
    图7 各驱动臂的工作行程Fig.7 Working stroke of each driving arm
    图8 各驱动臂的驱动力大小Fig.8 Driving force of each driving arm
    图9 一般外力工况下驱动臂验证结果对比Fig.9 Comparison of verification results of driving arm under general external force conditions
    图10 一般外力矩工况下驱动臂验证结果对比Fig.10 Comparison of verification results of driving arm under general external torque conditions
    表 2 系统动力学参数Table 2 System dynamics parameters
    表 3 驱动臂的控制特性参数Table 3 Control characteristic parameters of driving arm
    参考文献
    相似文献
    引证文献
引用本文

陈传志,汪捷,陈金宝,邓卫华,崔继云.弱撞击对接机构动力学特性建模[J].南京航空航天大学学报,2021,53(1):35-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-05-26
  • 最后修改日期:2020-12-24
  • 在线发布日期: 2021-02-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!