考虑弹性变形的月面表取机械臂精度补偿方法
CSTR:
作者:
作者单位:

北京邮电大学自动化学院,北京 100876

通讯作者:

陈钢,男,教授,博士生导师。长期从事空间机器人设计、建模、规划与控制等研究工作。承担各类科研项目60余项,出版学术专著2部,发表论文60余篇,授权国家发明专利20余项,获中国机械工业科技奖一等奖1项。E-mail:buptcg@163.com。

中图分类号:

TP242

基金项目:

国家自然科学基金(61802363)资助项目;国家自然科学基金(51975059)资助项目。


Accuracy Compensation for a Lunar Sampling Manipulator with Elastic Deformation
Author:
Affiliation:

School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    表取机械臂具有大跨度、低刚度的特点,静外力作用下杆件及关节容易发生较大弹性变形,影响机械臂末端绝对定位精度;同时,加工或装配造成的几何参数误差也会对末端绝对定位精度造成一定影响。为提高表取机械臂末端绝对定位精度,提出一种考虑弹性变形的表取机械臂精度补偿方法。首先,基于改进的Denavit-Hartenberg (Modified DH, MDH)模型对机械臂进行运动学建模并推导几何误差模型;其次,计算因杆件、关节弹性变形产生的杆件坐标系弹性误差,建立弹性误差与机械臂末端位置误差间的映射关系;然后,综合几何误差模型与弹性误差模型建立机械臂综合误差模型;最后,辨识机械臂几何参数,补偿机械臂末端位置误差。实验结果表明,该方法能够有效提高机械臂末端绝对定位精度。

    Abstract:

    Lunar sampling manipulator has large span and a low stiffness. Its links and joints are prone to large flexible deformation under static external force, which affects the absolute end positioning accuracy of the manipulator. At the same time, the kinematics error caused by manufacturing assembly error also increases the difficulty to the improvement of the manipulator’s accuracy. In order to improve the absolute positioning accuracy of the end, a method for robot kinematics parameter calibration based on elastic error model is proposed. Firstly, based on the modified Denavit-Hartenberg (MDH) model, the kinematics model and the geometric error model are established. Secondly, based on the force analysis of the joints and links of the manipulator, the elastic error model is established to reflect the relation between the elastic error and the end positioning error of the manipulator. Thirdly, the kinematics error model is developed by combining the geometric error model with the elastic error model. Finally, a method for kinematic calibration is designed and kinematic parameters is identified. The experimental results show that the method can effectively improve the positioning accuracy of the end of the manipulator.

    表 3 精度补偿前后末端位置误差对比Table 3 Comparison of positioning error in different situations
    图1 表取机械臂MDH坐标系Fig.1 MDH coordinate systems of the manipulator
    图2 杆件4重力向杆件3末端等效示意图Fig.2 Equivalent diagram of gravity of link 4 toward the end of link 3
    图3 杆件B受力分析Fig.3 Schematic drawing of force analysis of link B
    图4 杆件B的变形示意图Fig.4 Schematic drawing of deformation of link B
    图5 杆件A受力分析图Fig.5 Schematic drawing of force analysis of link A
    图6 杆件4重力向关节4简化示意图Fig.6 Equivalent diagram of gravity of link 4 toward joint 4
    图7 关节4受力分析图Fig.7 Schematic drawing of force analysis of joint 4
    图8 关节3受力分析图Fig.8 Schematic drawing of force analysis of joint 3
    图9 关节2受力分析图Fig.9 Schematic drawing of force analysis of joint 2
    图10 关节1受力分析图Fig.10 Schematic drawing of force analysis of joint 1
    图11 考虑杆件变形的机械臂坐标系Fig.11 Coordinate systems considering deformation of links
    图12 精度补偿算法流程图Fig.12 Flowchart of algorithm for accuracy compensation
    图13 精度补偿前后末端位置误差Fig.13 Positioning error before and after compensation
    表 2 表取机械臂补偿前后的MDH参数Table 2 MDH parameters before and after compensation
    参考文献
    [1] 张樵苏. 探月“三步走” 收官“有看头”——中国探月工程嫦娥五号任务正式启航[EB/OL]. (2020-11-24). http://www.xinhuanet.com/202011/24/c_1126779817.htm.
    [2] 王仕卫. 面向在轨服务的空间机械臂自标定方法研究[D]. 北京: 北京邮电大学, 2019.
    [3] 文科, 张加波, 赵长喜, 等. 工业机器人D-H运动学参数分步辨识方法[J]. 南京航空航天大学学报, 2018, 50(S2): 69-73.
    [4] 向民志, 李祥云, 范百兴, 等. 基于抗差估计的工业机器人运动学参数标定[J]. 南京航空航天大学学报, 2018, 50(6): 848-853.
    [5] 陈钢, 贾庆轩, 李彤, 等. 基于误差模型的机器人运动学参数标定方法与实验[J]. 机器人, 2012, 34(6): 680-688.
    [6] KHALIL W, BESNARD S. Geometric calibration of robots with flexible joints and links[J]. Journal of Intelligent and Robotic Systems, 2002, 34(4): 357-379.
    [7] MEGGIOLARO M A, DUBOWSKY S, MAVROIDIS C. Geometric and elastic error calibration of a high accuracy patient positioning system[J]. Mechanism and Machine Theory, 2005, 40(4): 415-427.
    [8] ZHOU J, NGUYEN H N, KANG H J. Simultaneous identification of joint compliance and kinematic parameters of industrial robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(11): 2257-2264.
    [9] 刘志, 赵正大, 谢颖, 等. 考虑结构变形的机器人运动学标定及补偿[J]. 机器人, 2015, 37(3): 376-384.
    [10] 伍小凯. 轻型柔性机械臂的误差分析与辨识[D]. 大连: 大连理工大学, 2013.
    [11] 陈宵燕. 工业机器人多模式标定及刚柔耦合误差补偿方法研究[D]. 无锡: 江南大学, 2020.
    [12] 刘振宇, 陈英林, 曲道奎, 等. 机器人标定技术研究[J]. 机器人, 2002, 24(5): 447-450.
    [13] 马如奇, 姜水清, 刘宾, 等. 月球采样机械臂系统设计及试验验证[J]. 宇航学报, 2018, 39(12): 1315-1322.
    [14] 王康, 张沛, 林云成, 等. 采样机械臂关节月表环境适应性设计[J]. 航天器环境工程, 2017, 34(5): 482-489.
    [15] SANTOLARIA J, AGUILAR J J, YAGüE J A, et al. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering, 2008, 32(4): 251-268.
    [16] HAYATi S A. Robot arm geometric link parameter estimation[C]//Proceedings of the IEEE Conference on Decision and Control. New York: IEEE, 1983: 1477-1483.
    [17] 王蕾. 柔性机械臂运动学参数标定与精度补偿技术研究[D]. 北京:北京邮电大学, 2019.
    [18] 阎华, 刘桂雄, 郑时雄. 机器人位姿误差建模方法综述[J]. 机床与液压, 2000(1): 3-5.
    引证文献
引用本文

陈钢,孙丰磊,李彤,邵文.考虑弹性变形的月面表取机械臂精度补偿方法[J].南京航空航天大学学报,2021,53(1):1-10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-01-11
  • 最后修改日期:2021-02-06
  • 在线发布日期: 2021-02-05
文章二维码
您是第6577726位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!