舰载机弹射起飞结构动态响应分析方法与应用
CSTR:
作者:
作者单位:

1.航空工业成都飞机工业(集团)有限责任公司,成都, 610092;2.华南理工大学土木与交通学院,广州, 510641

通讯作者:

杨莹,女,高级工程师, E-mail:yangying3744@sina.com。

中图分类号:

V212

基金项目:

国家自然科学基金(11372113,11472110,11672110)资助项目。


Dynamic Response Analysis Method and Application of Shipboard Aircraft Take-Off Structure
Author:
Affiliation:

1.AVIC Chengdu Aircraft Industrial (GROUP) Co.Ltd.,Chengdu, 610092,China;2.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou, 510641,China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    舰载机在弹射起飞过程中,载荷大、加速度大、距离短、时间短,且受大气扰动、航母运动的影响,存在复杂的强非线性多学科动力学耦合问题。文中建立了舰载飞机-弹射系统简耦多体动力学模型,考虑在舰面摇晃载荷、侧风载荷作用下,利用ADAMS 动力学仿真软件对舰载机弹射起飞进行刚柔耦合多体动力学仿真分析,获得弹射起飞过程中飞机机体过载传递路径和应变分布。通过仿真分析与相关文献中试验数据进行对比表明,这种仿真方法能够高效模拟强非线性复杂载荷耦合下的舰载机弹射起飞过程,为舰载机弹射起飞全过程研究及机身结构设计提供参考。

    Abstract:

    In the process of ejection take-off, shipboard aircraft are subject to large load, large acceleration, short distance and short time, as well as the influence of atmospheric disturbance and shipboard movement. There is a complex strong nonlinear multidisciplinary dynamics coupled problem. A simple multi-body dynamic model of shipboard aircraft-ejection system is established. Under the action of ship surface shaking load and cross wind load, ADAMS is used to conduct rigid-flexible coupled multi-body dynamic simulation analysis of shipboard airframe ejection take-off, and the overload transfer path and strain distribution of airframe during ejection take-off are obtained. Through the comparison between the simulation analysis and the experimental data in the related literature, it is shown that this simulation method can effectively simulate the ejection take-off process of shipboard aircraft under the strong nonlinear and complex load coupling, providing reference for the whole process research of shipboard aircraft ejection take-off and the design of fuselage structure.

    图1 舰载机及其弹射装置示意图Fig.1 Sketch of shipboard aircraft and ejection device
    图2 刚柔耦合多体动力学模型建模的基本流程Fig.2 Basic flow of rigid-flexible coupled multi-body dynamics model modeling
    图3 舰载机弹射起飞动力学模型Fig.3 Dynamic model of shipboard aircraft ejection take-off
    图4 模型部分模态Fig.4 Selected modes of model
    图5 刚柔耦合动力学模型Fig.5 Rigid-flexible coupled dynamics model
    图6 弹射力加载时程曲线Fig.6 Ejection force loading-time history curve
    图7 发动机推力加载时程曲线Fig.7 Engine thrust force loading-time history curve
    图8 钳制力时程曲线Fig.8 Rein force loading-time history curve
    图9 飞机质心航向加速度时程曲线Fig.9 Center of aircraft mass heading acceleration-time history curve
    图10 飞机质心航向速度时程曲线Fig.10 Center of aircraft mass heading speed-time history curve
    图11 飞机质心航向位移时程曲线Fig.11 Center of aircraft mass heading displacement-time history curve
    图12 机身上采样点Fig.12 Sampling points of fuselage
    图13 采样点9处加速度峰值Fig.13 Peak values of acceleration of sampling point 9
    图14 舰面纵摇对弹射过载的影响Fig.14 Effect of ship pitch on ejection overload
    图15 采样点3横向过载对比Fig.15 Comparison of horizontal overloads at sampling point 3
    图16 与加强杆连接框上选点的应力时程曲线Fig.16 Stress-time history curves of the sampling point on the connection frame with the stiffener
    图17 沿加强框分布方向的应力分布图Fig.17 Diagram of stress along the direction of the reinforcing frame
    图18 加速度传感器位置示意图Fig.18 Sketch of acceleration sensor position
    图19 1~6测量点过载峰值试验与仿真结果对比Fig.19 Comparison of test and simulation results of overload peak values at sampling points 1—6
    图20 8~11过载峰值试验与仿真结果对比Fig.20 Comparison of test and simulation results of overload peak values at sampling points 8—11
    参考文献
    [1] 曲东才, 周胜明. 舰载机起飞技术研究[J]. 航空科学技术, 2004(4): 25-29.
    [2] 海军装备部飞机办公室. 国外舰载机技术发展[M]. 北京:航空工业出版社, 2008.
    [3] 曲东才. 航母舰载机是如何起飞的?[J]. 现代兵器, 1998(11): 30-32.
    [4] Lawrence. The launching and landing of carrier aircraft: AD21495[R]. Kansas:
    [5] Lucas C B. Catapult criteria for a carrier-based airplane: AD702814[R].
    [6] Ramsey J E, Dixon W R. Carrier suitability tests of the model A-6A aircraft[R].
    [7] Joseph C E, Martin G J L.Flight investigation of the use of a nose gear jumpstrut to reduce takeoff ground roll distance of STOL aircraft[R].
    [8] 金长江, 洪冠新. 舰载机弹射起飞及拦阻着舰动力学问题[J]. 航空学报, 1990, 11(12): 534-542.
    [9] 黄再兴, 樊蔚勋, 高泽迥. 舰载机前起落架突伸的动力学分析[J]. 南京航空航天大学学报,1995, 27(4): 466-473.
    [10] 贾忠湖,高永,韩维.航母纵摇对舰载机弹射起飞的限制研究[J].飞行力学,2002,20(2): 19-21,26.
    [11] 郭元江,李会杰,申功璋,等.复杂环境下舰载机弹射起飞环境因素建模分析[J].北京航空航天大学学报,2011,37(7): 877-881.
    [12] 何敏,朱小龙,刘晓明,等.舰载飞机前机身结构地面弹射冲击响应研究[J].航空学报,2018,39(5): 221711.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨莹,唐克兵,方雄,姚小虎.舰载机弹射起飞结构动态响应分析方法与应用[J].南京航空航天大学学报,2020,52(6):957-962

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-23
  • 最后修改日期:2019-11-10
  • 在线发布日期: 2020-12-05
文章二维码
您是第6784853位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!