充气式气动减速器的折叠方法及充气过程数值仿真
CSTR:
作者:
作者单位:

1.南京航空航天大学飞行器环境控制与生命保障工业和信息化部重点实验室,南京,210016;2.南京航空航天大学航空学院,南京,210016

通讯作者:

余莉,女,教授,博士生导师, E-mail: yuli_happy@nuaa.edu.cn。

中图分类号:

V475

基金项目:

国家自然科学基金面上(11972192)资助项目;江苏高校优势学科建设工程资助项目。


A Folding Method of Inflatable Aerodynamic Decelerator and Numerical Simulation of Inflation Process
Author:
Affiliation:

1.Key Laboratory of Aircraft Environment Control and Life Support of Ministry of Industry and Informatization Technology, Nanjing, 210016, China;2.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对充气式气动减速器难以建立折痕有序、径向压缩的折叠模型,本文提出了分割映射折叠方法。首先基于分割映射技术得到分割展平面;其次通过矩阵变换将分割展平面转换为连续的几何折叠模型;最后,采用初始应力修正了建模过程中的模型误差,降低了充气过程中的应力集中和网格畸变问题。数值结果表明:充满的单圆环的表面积和体积误差仅为1.8%,验证了本文折叠方法的高精度;充气式气动减速器的初始和充满外形与实验外形一致,展开过程稳定、有序,说明该方法的可靠性和适用性。本文折叠方法适用于任意旋转曲面的多维压缩和有序折叠,提高了曲面展开数值仿真的精确度和稳定性。

    Abstract:

    Aiming at the problem that the inflatable aerodynamic decelerator (IAD) is difficult to establish a folding model with regular folds and radial compression rate,the segmentation mapping folding (SMF) method is proposed in this paper. Firstly, flattened planes are obtained by using the segmentation mapping technique. Then the segmented planes are transformed into a continuous geometric folding model by using the matrix transformation. Finally, the initial stress is used to modify the model errors during folding process, which can reduce the problems of stress concentration and mesh distortions during inflation process. Numerical results show that surface area and volume errors of the inflated single torus are only 1.8%, demonstrating the high precision of SMF method. The initial and the full shapes of the IAD are consistent with those of the experimental, and the inflation process is stable and orderly, demonstrating the reliability and applicability of SMF method. The proposed folding method can be used in the multidimensional compression and regular folding of any surface of revolution, and also improves the accuracy and stability of the surface inflation numerical simulation.

    表 2 各环充气流量Table 2 Mass flow in different tori
    图1 曲面展平过程的原理图Fig.1 Schematic diagram of the surface flattening process
    图2 通过矩阵转换进行折叠建模Fig.2 Fold modeling through matrix transformation
    图3 初始应力修正原理Fig.3 Principle of initial stress modification
    图4 初始应力修正步骤Fig.4 Steps of initial stress modification
    图5 圆环折叠建模过程Fig.5 Fold modeling process of torus
    图6 圆环的未折叠外形随切分数的变化Fig.6 Variation of the unfolded shape of torus with the segmentation number
    图7 面积和体积精度随切分数的变化Fig.7 Variation of area and volume precision with the segmentation number
    图8 有限元网格模型Fig.8 Finite element mesh model
    图9 充气过程中模型B的几何外形Fig.9 Geometric shape of Model B during inflation process
    图10 圆环内压强和体积随时间的变化Fig.10 Variation of pressure and volume in torus with time
    图11 圆环等效应力云图Fig.11 Equivalent stress cloud chart of torus
    图12 最大等效应力随时间的变化Fig.12 Variation of dynamic maximum equivalent stress with time
    图13 IAD几何模型Fig.13 Geometric model of IAD
    图14 IAD折叠建模过程Fig.14 Fold modeling process of IAD
    图15 IAD映射网格和参考网格Fig.15 Mapping mesh and reference mesh of IAD
    图16 数值结果与实验结果的对比Fig.16 Comparison of numerical and experimental results
    图17 不同圆环内压强和体积随时间的变化Fig.17 Variation of pressure and volume in different tori with time
    图18 投影面积随时间的变化Fig.18 Variation of projection area with time
    表 1 数值仿真参数Table 1 Numerical simulation parameters
    参考文献
    [1] CHEATWOOD M N, HUGHES S, CALOMINO A, et al. Manufacturing challenges and benefits when scaling the HIAD stacked-torus aeroshell to a 15 m-class system[C]//Proceedings of 2016 IEEE Aerospace Conference. Istanbul, Turkey: IEEE, 2016: 1-12.
    [2] AAEON O, ROGER B, DAVID M B, et al. IRVE-3 post-flight reconstruction[C]//Proceedings of Aerodynamic Decelerator Systems Technology Conferences. Daytona Beach, USA: AIAA, 2013: 1-21.
    [3] HUGHES S J, CHEATWOOD M N, CALOMINO A M, et al. Hypersonic inflatable aerodynamic decelerator (HIAD) technology development overview[C]//Proceedings of AIAA Aerodynamic Decelerator Systems Technology Conference & Seminar. Dublin, Ireland: AIAA, 2013: 1-24.
    [4] HINKLE J, WILEY C E, KLING D. Numerical study and design of foldable and expandable space structures[C]//Proceedings of the 54th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Boston, USA: AIAA, 2013: 1-10.
    [5] BABUSCIA A, LOO M V D, WEI Q J, et al. Inflatable antenna for cubesat: Fabrication, deployment and results of experimental tests[C]//Proceedings of Aerospace Conference.[S.l.]: IEEE, 2015: 1-12.
    [6] 关富玲, 徐彦, 郑耀. 充气可展开结构技术在空间探索领域的应用[J]. 载人航天, 2009, 15(4): 40-48.
    [7] CHENG Han, YU Li, YANG Xuesong, et al. Numerical simulation of parachute opening process in finite mass situation[J]. Acta Aerodynamica Sinica, 2014, 32(2): 258-263.
    [8] SALAMA M, KUO C P, Lou M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38(12): 2277-2283.
    [9] 白远利, 张金换, 黄世霖. 一种映射算法在IMM法气袋建模中的应用[J]. 清华大学学报(自然科学版), 2002, 42(11): 1528-1531.
    [10] ZHANG Jinhuan, Ma Chunsheng, BAI Yuanli, et al. Airbag mapped mesh auto-flattening method[J]. Tsinghua Science and Technology, 2005, 10(3): 387-390.
    [11] 程涵. 柔性织物折叠建模技术及展开过程数值仿真研究[D]. 南京: 南京航空航天大学, 2013.
    [12] Liu Jiajia, LONG Jiang, LIANG Ke, et al. Reverse modeling of complicated folded fabric[J]. Journal of Industrial Textiles, 2015, 46(2): 417-435.
    [13] CHAWLA A, BHOSALE P V, MUKHERJEE S. Modeling of folding of passenger side airbag mesh: SAE Paper 687-693[R].
    [14] CHENG Han, YU Li, ZHAN Yanan. A new method of complicated folded fabric modeling[J]. Journal of Harbin Institute of Technology (New Series), 2012, 19(2): 43-46.
    [15] SHEFFER A, PRAUM E, ROSE K. Mesh parameterization methods and their applications[J]. Foundations & Trends in Computer Graphics & Vision, 2006, 2(2): 105-171.
    [16] 孙家广.计算机图形学[M].3版.北京:清华大学出版社,2009.
    [17] BELYSTCSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structure[M]. 3rd ed. Beijing: Tsinghua University Press, 2016.
    [18] Zhan Yanan, Yu Li, Yang Xue, et al. Initial stress correction method for the modeling of folded space inflatable structures[J]. Aviation, 2014, 18(4): 166-173.
    [19] WANG J T, JOHSON A R. Deployment simulation methods for ultra-lightweight inflatable structures[C]//Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC/ Structures, Structural Dynamics, and Material Conference. Denver, USA: AIAA, 2002: 1-18.
    [20] 卫剑征.空间折叠薄膜管充气展开过程气固耦合问题研究[D]. 哈尔滨:哈尔滨工业大学,2008.
    [21] LICHODZIEJEWSKI D, KELLEY C, TUTT B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012: 1-11.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵晓舜,余莉,杨雪.充气式气动减速器的折叠方法及充气过程数值仿真[J].南京航空航天大学学报,2020,52(6):948-956

复制
分享
文章指标
  • 点击次数:1142
  • 下载次数: 2287
  • HTML阅读次数: 915
  • 引用次数: 0
历史
  • 收稿日期:2019-03-06
  • 最后修改日期:2019-06-18
  • 在线发布日期: 2020-12-05
文章二维码
您是第6888620位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!