风-雨耦合环境超高层三塔连体建筑雨压分布研究
CSTR:
作者:
作者单位:

南京航空航天大学民航学院/飞行学院,南京, 211106

通讯作者:

柯世堂,男,博士,教授,博士生导师,E-mail:keshitang@163.com。

中图分类号:

TU279.741

基金项目:

国家自然科学基金(51761165022,U1733129)资助项目;江苏省六大人才高峰高层次计划(JZ-026)资助项目;江苏高校“青蓝工程”资助项目。


Rain Pressure Distribution of Three-Tower Connected Tall Buildings with Wind-Rain Coupled Environment
Author:
Affiliation:

College of Civil Aviation/College of Flight, Nanjing University of Aeronautics & Astronautics, Nanjing, 211106, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以中国东南沿海某超高层三塔连体建筑为研究对象,以风-雨双向耦合算法为核心,基于计算流体动力学技术采用连续相和离散相模型进行风场和雨场的迭代模拟。首先基于9种风雨组合工况进行三塔连体建筑非定常脉动风场模拟,探讨超高层三塔连体建筑平均风压分布、表面速度流线和流场干扰机理。然后对比研究不同风雨组合工况下主塔表面雨滴附着数量、雨滴冲击力和雨压系数的分布规律,揭示风-雨耦合场中结构表面速度流线、雨滴运行轨迹和最终速度的作用机理。最后提炼出超高层三塔连体建筑最不利风-雨组合工况,并给出对应的雨压系数取值建议。研究表明:风-雨耦合环境下超高层连体建筑迎风面雨荷载作用最为显著,此时雨荷载与风荷载最大比值可达23.81%,局部测点最大雨压系数达到0.301,100 a重现期风速和强大暴雨组合为风-雨耦合作用的最不利组合工况。

    Abstract:

    An iterative simulation on wind field and rain field in one three-tower connected tall buildings in southeast coastal region in China was carried out based on the computational fluid dynamic technology. In the iterative simulation, the wind-rain two-way coupled algorithm was viewed as the core and the continuous phase model and discrete phase model were used. Firstly, the nonsteady fluctuating wind fields in connected buildings were simulated under 9 wind-rain working conditions. The average wind pressure distribution, the surface velocity streamline, and the flow field disturbance mechanism of the three-tower connected tall buildings were discussed. Secondly, the number of raindrops on the principal tower surface, impact force of raindrops, and distribution law of rain pressure coefficient at different wind-rain working conditions were compared. The structural surface velocity streamline, raindrop travelling path and action mechanism of the final velocity in the wind-rain coupled field were disclosed. Finally, the most unfavorable wind-rain working condition for the three-tower connected tall buildings was recognized. The recommended values of the rain pressure coefficient were given. The results demonstrated that the rain load on the windward surface of the three-tower connected tall buildings in the wind-rain coupled environment was the most significant. The maximum rain-to-wind load ratio reached 23.81% and the maximum rain pressure coefficient at local measuring points reached 0.301. The wind velocity and strong rainstorm combination was the most unfavorable wind-rain working condition in the 100-year recurrence interval.

    参考文献
    [1] 余先锋, 谢壮宁, 顾明. 群体高层建筑风致干扰效应研究进展[J]. 建筑结构学报, 2015, 36(3): 1-11.
    [2] Huang M F, Chan C M, Lou W J. Optimal performance-based design of wind sensitive tall buildings considering uncertainties[J]. Computers & Structures, 2012, 98: 7-16.
    [3] Blocken B, Carmeliet J. A review of wind-driven rain research in building science[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2004, 92(13): 1079-1130.
    [4] Kasperski M. Extreme wind load distributions for linear and nonlinear design[J]. Engineering Structures, 1992, 14(1): 27-34.
    [5] Khanduri A C, Stathopoulos T, Bédard C. Wind-induced interference effects on buildings—A review of the state-of-the-art[J]. Engineering Structures, 1998, 20(7): 617-630.
    [6] Lam K M, Leung M Y H, Zhao J G. Interference effects on wind loading of a row of closely spaced tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(5): 562-583.
    [7] Yu X F, Xie Z N, Wang X, et al. Interference effects between two high-rise buildings on wind-induced torsion[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 159: 123-133.
    [8] Huang D, Zhu X, He S, et al. Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section[J]. Wind & Structures An International Journal, 2017, 24(5): 501-528.
    [9] Zhang J W, Li Q S. Field measurements of wind pressures on a 600 m high skyscraper during a landfall typhoon and comparison with wind tunnel test[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 175: 391-407.
    [10] Xie J, Irwin P A. Wind-induced response of a twin-tower structure[J]. Wind & Structures An International Journal, 2001, 4(6): 495-504.
    [11] Shen G, Sun B, Lou W, et al. Distribution of wind load on symmetrical double tower tall building[J]. Journal of Building Structures, 2003, 24(1): 64-66.
    [12] Song J, Tse K T. Dynamic characteristics of wind-excited linked twin buildings based on a 3-dimensional analytical model[J]. Engineering Structures, 2014, 79(79): 169-181.
    [13] Choi E C C. Parameters affecting the intensity of wind-driven rain on the front face of a building[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1994, 53(1/2): 1-17.
    [14] Choi E C C. Numerical modelling of gust effect on wind-driven rain[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 72(1): 107-116.
    [15] Cosentino N, Flamand O, Ceccoli C. Rain-wind induced vibration of inclined stay cables—Part I: Experimental investigation and physical explanation[J]. Wind & Structures An International Journal, 2003, 6(6): 471-484.
    [16] Jing H, He X, Li H. Initial condition and damping effects on rain-wind induced cable vibration[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 175: 376-383.
    [17] 王辉, 李新俊, 潘竹. 建筑(群)立面风驱雨压荷载的数值模拟研究[J]. 土木工程学报, 2014, 47(9): 94-100.
    [18] Arch G, Hajra B, Moravej M, et al. An experimental study to assess the effect of soffit louvered vents on wind loads and wind driven rain intrusion on low rise buildings[J]. Sustainable Cities & Society, 2017, 34: 43-55.
    [19] 杨俊涛, 楼文娟. 风驱雨CFD模拟及平均雨荷载计算方法研究[J]. 空气动力学学报, 2011, 29(5): 600-606.
    [20] Mcfarquhar G M, List R. The raindrop mean free path and collision rate dependence on rainrate for three-peak equilibrium and Marshall-Palmer distributions[J]. Journal of the Atmospheric Sciences, 2010, 48(48): 1999-2004.
    [21] Gunn R, Kinzer G D. The terminal fall velocity for water droplets in stagnant air[J]. Journal of the Atmospheric Sciences, 1949, 6(4): 243-248.
    [22] Rigby E C, Marshall J S, Hitschfeld W. The development of the size distribution of raindrops during their fall[J]. Journal of the Atmospheric Sciences, 2010, 11(5): 362-372.
    [23] 刘顺, 黄生洪, 李秋胜,等. 基于欧拉多相流模型的桥梁主梁三维风驱雨数值研究[J]. 工程力学, 2017, 34(4): 63-71.
    [24] Douvi E, Margaris D. Aerodynamic performance investigation under the influence of heavy rain of a NACA 0012 airfoil for wind turbine applications[J]. International Review of Mechanical Engineering, 2012, 6(6):1-8.
    [25] Elshaer A, Bitsuamlak G, Damatty A E. Enhancing wind performance of tall buildings using corner aerodynamic optimization[J]. Engineering Structures, 2017, 136: 133-148.
    [26] 陈博文. 低矮房屋表面风雨压力CFD数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2009.
    [27] Ke S, Wang H, Ge Y. Wind load effects and equivalent static wind loads of three-tower connected tall buildings based on wind tunnel tests[J]. Structural Engineering & Mechanics, 2016, 58(6): 967-988.
    引证文献
引用本文

王晓海,柯世堂,赵永发,员亦雯,刘田田.风-雨耦合环境超高层三塔连体建筑雨压分布研究[J].南京航空航天大学学报,2020,52(5):825-834

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-02-22
  • 最后修改日期:2020-04-30
  • 在线发布日期: 2020-10-05
文章二维码
您是第6787333位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!