基于深度学习的欧几里得嵌入的推荐算法
作者:
作者单位:

1.南京邮电大学通达学院,扬州,225127;2.计算机软件新技术国家重点实验室(南京大学),南京,210023

作者简介:

通讯作者:

余永红,男,副教授,E-mail:yuyh@njupt.edu.cn。

中图分类号:

TP181

基金项目:

江苏省高校自然科学研究基金(17KJB520028)资助项目;江苏省青蓝工程资助项目;南京邮电大学校级科研基金(NY217114)资助项目。


Recommendation Algorithm of Euclidean Embedding Based on Deep Learning
Author:
Affiliation:

1.Tongda College,Nanjing University of Posts and Telecommunications,Yangzhou, 225127, China;2.State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing, 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    推荐系统为用户推荐用户可能感兴趣的物品,可以有效地减轻信息过载。基于欧几里得嵌入的协同过滤方法将用户和物品映射到统一的隐藏空间中,是构建推荐系统的重要方法之一。然而,传统的基于欧几里得嵌入的推荐方法仅考虑用户和物品隐藏特征向量之间低阶交互,不能有效建模现实世界中用户和物品的复杂交互行为。本文提出基于深度学习的欧几里得嵌入的协同过滤算法,利用深度学习技术学习用户和物品隐藏特征向量之间的高阶、非线性交互函数,建模用户和物品之间复杂交互行为。在真实数据集上的实验结果表明,基于深度学习的欧几里得嵌入的协同过滤算法性能优于传统协同过滤算法。

    Abstract:

    Recommender systems can effectively reduce the information overload by recommending items that users may be interested in. Euclidean-embedding-based collaborative filtering methods map users and items to a unified latent space, which is one of the most important methods to build a recommender system. However, traditional Euclidean-embedding-based collaborative filtering methods only consider the low-order interaction between user latent feature vectors and item latent feature vectors, and cannot efficiently model the complex interaction behavior between users and items in the real world. In this paper, we propose a deep-Euclidean-embedding-based collaborative filtering algorithm, which utilizes deep learning technology to learn the high-order and nonlinear interaction function between user latent feature vectors and item latent feature vectors. This can model the complex interaction behavior between users and items. Experimental results on real-world datasets show that our proposed algorithm outperforms traditional collaborative filtering algorithms.

    参考文献
    相似文献
    引证文献
引用本文

余永红,殷凯宇,王强,张文彪,赵卫滨.基于深度学习的欧几里得嵌入的推荐算法[J].南京航空航天大学学报,2020,52(5):729-735

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-08-10
  • 最后修改日期:2020-09-02
  • 录用日期:
  • 在线发布日期: 2020-10-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司