基于深度卷积网络的海洋涡旋检测模型
作者:
作者单位:

中国海洋大学信息科学与工程学院,青岛,266100

作者简介:

通讯作者:

孙鑫,男,副教授,E-mail: sunxin@ouc.edu.cn。

中图分类号:

TP3;TP7;P7

基金项目:

国家自然科学基金(61971388,U1706218,41576011,L1824025)资助项目;山东省重点研究开发计划(GG201703140154)资助项目。


Ocean Eddy Detection Model Based on Deep Convolution Neural Network
Author:
Affiliation:

Institute of Information Science and Engineering, Ocean University of China, Qingdao, 266100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的利用遥感数据检测涡旋的方法通常是基于物理参数、几何特征、手工特征或专家知识。本文重点研究了基于深度学习技术从海表面高度图中识别海洋涡旋的方法。针对海洋卫星拍摄的海洋表面高度图中的涡旋检测问题,提出了一种基于卷积神经网络的多涡旋检测模型,该模型能够准确提取涡旋的特征信息,拟合语义信息与海面高度之间的关系。同时,在用于涡旋检测的最新公开数据集SCSE-Eddy上进行模型训练,以评估基于人工智能的涡旋检测方法性能,该数据集涵盖了15年来位于中国南海及其东部部分海域的每日卫星遥感海表面高度数据。实验结果表明,与现有的方法相比,本文模型取得了更好的检测结果,能够更好地区分相距较近的涡旋。

    Abstract:

    The automatic detection of mesoscale ocean eddies is extremely essential to monitor their dynamic changes. Therefore, effective detection of ocean eddies is vital to improve understanding of ocean dynamics. The traditional methods of detecting eddies using remote sensing data are usually based on physical parameters, geometric features, manual features or expert knowledge. In recent years, the deep learning technology has been improved by many experts. In this paper, the deep learning method is used to detect the ocean eddies from the sea surface height (SSH) data. Firstly, a multi-eddy detection model based on deep convolution neural network is proposed aiming to resolve eddy detection challenge on SSH data photoed by satellite. The model can accurately extract the feature information of eddies and fit the relationship between semantic information and sea level anomaly. Secondly, a new dataset, i.e., SCSE-Eddy, is used to train the proposed model and evaluate the performance of eddy detection method based on artificial intelligence (AI). This dataset is composed of the daily satellite remote sensing SSH data covering the South China Sea and its eastern sea area over the past 15 years. Experimental results show that, compared with the existing methods, the model proposed in this paper achieves the best performance and distinguishes close eddies well.

    参考文献
    相似文献
    引证文献
引用本文

张盟,杨玉婷,孙鑫,董军宇,梁瑶.基于深度卷积网络的海洋涡旋检测模型[J].南京航空航天大学学报,2020,52(5):708-713

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-07
  • 最后修改日期:2020-07-20
  • 录用日期:
  • 在线发布日期: 2020-10-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司