基于状态监测数据的航空发动机剩余寿命在线预测
作者:
作者单位:

1.空军工程大学装备管理与无人机工程学院,西安, 710051;2.北京系统工程研究所,北京, 100020

作者简介:

通讯作者:

张洋铭,男,助理研究员, E-mail: 352186390@qq.com。

中图分类号:

TB114.3

基金项目:


Online Remaining Useful Lifetime Prediction for Aero-Engine Based on Condition Monitoring Data
Author:
Affiliation:

1.Equipment Management & UAV Engineering College, Air Force Engineering University, Xi’an, 710051, China;2.Beijing Institute of System Engineering,Beijing, 100020, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有基于状态监测数据的航空发动机剩余寿命预测研究未能综合考虑隐含退化建模和同步更新漂移/扩散系数的问题,提出一种基于状态监测数据的航空发动机剩余寿命在线预测方法。首先,基于非线性Wiener过程构建带比例关系的航空发动机隐含退化模型;其次,基于多台同类发动机的历史状态监测数据,对退化模型参数进行离线估计;然后,基于目标发动机的实时状态检测数据,利用贝叶斯原理同步更新退化模型漂移/扩散系数;最后,推导出航空发动机的剩余寿命概率密度函数。结合实例分析,验证了本文所提方法较传统方法具有更高的预测准确性与精度,具备潜在工程应用前景。

    Abstract:

    For the problem of remaining useful lifetime (RUL) prediction of aero-engine, the present methods have not comprehensively considered the hidden degradation modeling and drift/diffusion coefficient synchronous updating. An online RUL prediction for aero-engine based on the condition monitoring (CM) data is presented in this paper. Firstly, the proportional degradation model of aero-engine is established based on the nonlinear Wiener process. Secondly, based on the historical condition monitoring data of similar engines, the degradation model parameters are estimated offline by using the maximum likelihood estimation (MLE) method. And then, based on the real-time condition monitoring data of the target engine, the drift/diffusion coefficient are synchronously update by using the Bayesian principle. Finally, the RUL probability density function of aero-engine is derived. The example analysis shows that the proposed method has higher prediction accuracy and precision than the traditional one, and has potential engineering application prospects.

    参考文献
    相似文献
    引证文献
引用本文

李航,张洋铭.基于状态监测数据的航空发动机剩余寿命在线预测[J].南京航空航天大学学报,2020,52(4):572-579

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-17
  • 最后修改日期:2019-11-19
  • 录用日期:
  • 在线发布日期: 2020-08-05
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司