基于状态监测数据的航空发动机剩余寿命在线预测
CSTR:
作者:
作者单位:

1.空军工程大学装备管理与无人机工程学院,西安, 710051;2.北京系统工程研究所,北京, 100020

通讯作者:

张洋铭,男,助理研究员, E-mail: 352186390@qq.com。

中图分类号:

TB114.3


Online Remaining Useful Lifetime Prediction for Aero-Engine Based on Condition Monitoring Data
Author:
Affiliation:

1.Equipment Management & UAV Engineering College, Air Force Engineering University, Xi’an, 710051, China;2.Beijing Institute of System Engineering,Beijing, 100020, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有基于状态监测数据的航空发动机剩余寿命预测研究未能综合考虑隐含退化建模和同步更新漂移/扩散系数的问题,提出一种基于状态监测数据的航空发动机剩余寿命在线预测方法。首先,基于非线性Wiener过程构建带比例关系的航空发动机隐含退化模型;其次,基于多台同类发动机的历史状态监测数据,对退化模型参数进行离线估计;然后,基于目标发动机的实时状态检测数据,利用贝叶斯原理同步更新退化模型漂移/扩散系数;最后,推导出航空发动机的剩余寿命概率密度函数。结合实例分析,验证了本文所提方法较传统方法具有更高的预测准确性与精度,具备潜在工程应用前景。

    Abstract:

    For the problem of remaining useful lifetime (RUL) prediction of aero-engine, the present methods have not comprehensively considered the hidden degradation modeling and drift/diffusion coefficient synchronous updating. An online RUL prediction for aero-engine based on the condition monitoring (CM) data is presented in this paper. Firstly, the proportional degradation model of aero-engine is established based on the nonlinear Wiener process. Secondly, based on the historical condition monitoring data of similar engines, the degradation model parameters are estimated offline by using the maximum likelihood estimation (MLE) method. And then, based on the real-time condition monitoring data of the target engine, the drift/diffusion coefficient are synchronously update by using the Bayesian principle. Finally, the RUL probability density function of aero-engine is derived. The example analysis shows that the proposed method has higher prediction accuracy and precision than the traditional one, and has potential engineering application prospects.

    参考文献
    [1] HENG A, ZHANF S, TAN A C C,et al. Rotating machinery prognostics: State of the art, challenges and opportunities[J]. Mechanical Systems and Signal Processing, 2009, 23(3): 724-739.
    [2] 尤明懿. 基于状态监测数据的产品寿命预测与预测维护规划方法研究[D]. 上海: 上海交通大学, 2012.
    [3] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation: A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14.
    [4] WANG H, JIANG Y. Performance reliability prediction of complex system based on the condition monitoring information[J]. Mathematical Problems in Engineering, 2013, 2013: 1-7.
    [5] PENG C, TSENG S. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455.
    [6] YE Z, CHEN N, TSUI K L. A Bayesian approach to condition monitoring with imperfect inspections[J]. Quality and Reliability Engineering International, 2015, 31(3): 513-522.
    [7] 蔡忠义, 陈云翔, 项华春, 等. 融合先验加速退化与外场退化信息的可靠性评估方法[J]. 系统工程与电子技术, 2016, 38(4): 970-976.
    [8] ZHAI Q, YE Z. Robust degradation analysis with non-Gaussian measurement errors[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(11): 2803-2812.
    [9] WHITMORE G. Estimating degradation by a Wiener diffusion process subject to measurement error[J]. Lifetime Data Analysis, 1995, 1(3): 307-319.
    [10] XU Z G, JI Y D, ZHOU D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification[J]. IEEE Transactions on Reliability, 2008, 57(2): 230-242.
    [11] TANG S J, GUO X, YU C, et al. Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors [J]. Journal of Central South University, 2014, 21(12): 4509-4517.
    [12] SI X S, WANG W B, HU C H, et al. Estimating remaining useful life with three-source variability in degradation modeling[J]. IEEE Transactions on Reliability, 2014, 63(1): 167-190.
    [13] ZHENG J F, SI X S, HU C H, et al. A nonlinear prognostic model for degrading systems with three-source variability[J]. IEEE Transaction on Reliability, 2016, 65(2): 736-750.
    [14] 司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用 [M]. 北京: 国防工业出版社, 2016.
    [15] WANG H, MA X B, ZHAO Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2019, 127: 370-387.
    [16] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李航,张洋铭.基于状态监测数据的航空发动机剩余寿命在线预测[J].南京航空航天大学学报,2020,52(4):572-579

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-17
  • 最后修改日期:2019-11-19
  • 在线发布日期: 2020-08-05
文章二维码
您是第6962535位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!