基于视频的行人再识别
作者:
作者单位:

1.南通大学信息科学技术学院, 南通, 226019;2.南通先进通信技术研究院, 南通, 226019;3.南通大学交通学院, 南通, 226019;4.南通大学电气工程学院, 南通, 226019

作者简介:

通讯作者:

胡彬,男,讲师,博士,E-mail:nj-chris@126.com。

中图分类号:

TP391

基金项目:

江苏省教育厅自然科学基金 16KJB520037;江苏省社会安全图像与视频理解重点实验室创新基金 30916014107江苏省教育厅自然科学基金(16KJB520037)资助项目;江苏省社会安全图像与视频理解重点实验室创新基金(30916014107)资助项目。


Video-Based Person Re-identification
Author:
Affiliation:

1.School of Information Science and Technology, Nantong University, Nantong, 226019, China;2.Nantong Research Institute for Advanced Communication Technologies, Nantong, 226019, China;3.School of Transportation, Nantong University, Nantong, 226019, China;4.School of Electrical Engineering, Nantong University, Nantong, 226019, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人再识别是指在无交叉区域的多摄像机视频监控系统中, 匹配不同摄像机中的相同行人目标。本文提出了一种基于视频的行人再识别方法,用HOG3D来描述一组视频的时空特征,在训练集上用预训练的DenseNet来微调模型参数,利用迁移学习得到的模型来提取视频中行人的表观特征,融合两种特征来描述视频序列中的行人。最后将融合的高维特征降维,并用度量学习方法计算行人对之间的距离。本文在PRID 2011和iLIDS-VID这两个视频数据集上进行了使用,实验结果表明本文的方法取得了较高的累积匹配得分。

    Abstract:

    The task of person re-identification is to match pedestrian images observed from different cameras in a non-overlapping multi-camera surveillance systems. In this article, a video-based person re-identification method is proposed. HOG3D is extracted as temporal and spatial feature and the DenseNet model pre-trained on MSCOCO is adopted to fine-tune the parameters for person re-identification, and the fine-tuned model is used to extract the feature from person image. The two features are combined to describe the person video clip.Finally the metric learning model is applied to measure distance between person pairs. We evaluate our approach by operating in-depth experiments in two video-based benchmarks, and the experimental results on the two benchmark show significant and consistent improvements over the state-of-the-art methods.

    参考文献
    相似文献
    引证文献
引用本文

胡彬,杨铖,邵叶秦,杨赛.基于视频的行人再识别[J].南京航空航天大学学报,2019,51(5):669-674

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-07-06
  • 最后修改日期:2018-09-10
  • 录用日期:
  • 在线发布日期: 2019-11-13
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司