低速引射对高超声速飞行器气动加热影响
CSTR:
作者:
作者单位:

中国运载火箭技术研究院空间物理重点实验室,北京,100076

通讯作者:

中文作者简介:王丽燕,女,博士研究生, E-mail:wang_liyan12@163.com。

中图分类号:

V19

基金项目:

国家安全重大基础研究 613285;中央军委科学技术委员会基础加强类 0327004国家安全重大基础研究(613285)资助项目;中央军委科学技术委员会基础加强类(0327004)资助项目。


Impact of Low Speed Ejection on Aerodynamic Heating of Hypersonic Aircrafts
Author:
Affiliation:

Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing, 100076, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究低速引射对高超声速飞行器气动加热的影响,对高超声速来流条件下大面积平板引射进行数值模拟,讨论了引射孔结构、迎角和引射入口速度对边界层流场的影响,得到了不同引射孔结构下壁面热流,引射影响因子及流动参数随引射入口速度的变化。结果表明:低速气体引射在一定程度上能缓解引射区域壁面和下游壁面的气动加热情况。4种引射状态中引射孔结构4(即面引射)壁面热流最低,其他3种引射孔结构冷却效果基本相当。相同条件下10°迎角低速气体引射降热效果明显优于0°迎角的情况。引射入口速度v= 20 m/s时, 0°迎角情况下,引射区引射影响因子约为0.23,即壁面平均热流降低约23%;10°迎角情况下,引射区引射影响因子约为0.45,约为0°迎角情况的2倍。

    Abstract:

    To study the impact of low speed ejection on aerodynamic heating of hypersonic aircrafts,the flat injecting of large area under hypersonic flow condition is numerical simulated in this paper. The influence of ejecting pore structure, incidence angle and injecting inlet velocity on boundary layer flow field are discussed. Wall heat flux under different ejecting pore structures variation of ejecting factors and flow parameters with inlet velocity are obtained. The results show that low speed gas ejecting can relieve the aerodynamic heating situation of injecting regional wall and the downstream wall to some extent. The bigger the inlet velocity, the better the thermal reduction will be. As for four ejecting pore structures the wall heat flux is the lowest in ejecting pore structure 4 (surface ejecting pore structure), the other three ejecting cooling effect are basically quite. The thermal reduction of angle of attack α= 10° is obviously better than the state of α=0°. When injecting inlet velocity is 20 m/s, the injecting factor of injecting area is about 0.23, which means the averaged wall heat flux decreases about 23% under α=0°. And the injecting factor of injecting area is about 0.45 which is about double of the value of α=0°.

    参考文献
    [1] 姜志杰. 高超声速飞行器气动热影响部件的热分析[D]. 长沙: 国防科学技术大学, 2008.
    [2] 刘晓红, 罗翔, 陶智. 大小孔交替排列对气膜冷却效率的影响[J]. 北京航空航天大学学报,2010,36(11):1271-1274.
    [3] 李雪英, 韩昌, 秦晏旻,等. 扇形孔气膜冷却应用的综合特性[J]. 工程热物理学报, 2013,34(1):55-58.
    [4] 孙纪宁, 邓晶, 邓宏武. 涡轮叶片微小通道气膜新型复合冷却结构设计[J]. 北京航空航天大学学报,2012,38(5): 702-706.
    [5] 陆海波. 迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究[D]. 长沙: 国防科学技术大学, 2012.
    [6] MOFFAT R J, KAYS W M. Turbulent boundary layer on a porous plate: Experimental heat transfer with uniform blowing and suction[J]. International Journal of Heat and Mass Transfer,1968, 11(10):1547-1566.
    [7] SIMPSON R L, MOFFAT R J, KAYS W M. Turbulent boundary layer on a porous plate experimental skin friction with variable injection and suction[J]. International Journal of Heat and Mass Transfer, 1969,12(7): 771.
    [8] BERTIN J J,MCGINNIS I F K, WIMBERLY C R. The turbulent boundary-layer on a porous plate: experimental heat-transfer with uniform blowing and suction with moderately strong acceleration[J]. AIAA Journal,1970 8(6):1032-1038.
    [9] WIMBERLY C R, MEGINNIS F K. Transpiration and film cooling effects for a slender cone in Hypers-onic Flow[J]. AIAA Journal,2003,8(6):1032-1038.
    [10] 杨宽, 赵志军, 戴韧.圆形斜孔气膜冷却性能的试验研究[J]. 动力工程学报,2010(11): 827-832.
    [11] 朱惠人, 许都纯, 郭涛,等. 孔排布局对叶片前缘气膜冷却的影响[J].航空学报,2000,21(5): 385-388.
    [12] 朱惠人, 郭涛, 许都纯. 双排簸箕形孔气膜冷却效率及其叠加算法[J].航空动力学报,2006,21(5):814-819.
    [13] LIGRANI P M, WIGLE J M, CIRIELLO S, et al. Film-cooling from holes with compound angle orientations. Part 1: Results downstream of two staggered rows of holes with 3d spanwise spacing[J]. ASME Journal of Heat Transfer,1994,116(2):341-352.
    [14] 熊宴斌, 姜培学, 祝银海,等. 烧结平板和曲面结构在超声速主流条件下的发汗冷却[C]//中国工程热物理学会-传热传质. [S.l.]:[s.n.],2013.
    [15] SUMITANI Y, KASAGI N. Direct numerical simulation of turbulent transport with uniform wall injection and suction[J]. AIAA Journal,1995, 33(7): 1220-1228.
    [16] JIANG L, CHOUDHARI M, CHANG C L, et al. Numerical simulations of laminar-turbulent transition in supersonic boundary layer[C]//Collection of Technical Papers-36th AIAA Fluid Dynamics Conference. San Francisco, CA, United States:[s.n.], 2006: 986-1001.
    [17] LEITE P H M, SANTOS W F N. Direct simulation of heat transfer and pressure distributions of hypersonic flow over backward-facing steps[C]//Encontro De Modelagem Computacional. Riode Janeiro,RJ,Brazil:[s.n.],2009.
    [18] 雷云涛, 林智荣, 袁新. 不同吹风比下平板气膜冷却数值模拟[J]. 清华大学学报(自然科学版),2008,48(8): 1331-1334.
    [19] 王建, 孙冰, 魏玉坤. 超声速气膜冷却数值模拟[J]. 航空动力学报,2008,23(5): 865-870.
    [20] SREEKANTH M, REDDY N M. Numerical simulation of transpiration cooling over blunt bodies at hypersonic mach numbers: AIAA 95-2082[R].USA:AIAA,1995.
    [21] SREEKANTH M, REDDY N M. Transpiration cooling analysis at hypersonic mach numbers by using Navier-Stokes equations: AIAA 94-2075[R].USA:AIAA,1994.
    [22] 余磊, 姜培学. 发汗冷却湍流换热过程的数值模拟[J].清华大学学报(自然科学版),2003,43(12):1668-1671.
    [23] YANG X, BADCOCK K, RICHARDS B, et al. Numerical simulation of film cooling in hypersonic flows:AIAA 2003-3631[R].USA, AIAA,2003.
    [24] 王国雄, 马鹏飞. 弹头技术(上册)[M]. 北京:中国宇航出版社, 1993.
    [25] BYERLEY A R, IRELAND P T, JONES T V. Detailed heat transfer measurements near and within the entrance of a film cooling hole: ASME 88-GT-155[R], [S.l.]ASME 1988.
    [26] 徐红洲, 刘松龄. 气膜冷却喷孔附近的流场实验研究[J]. 西安交通大学学报,1998(7): 46-50.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王丽燕,檀妹静,王振峰,聂春生,李宇,郑宇.低速引射对高超声速飞行器气动加热影响[J].南京航空航天大学学报,2019,51(4):503-511

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-06
  • 最后修改日期:2019-01-20
  • 在线发布日期: 2019-10-08
文章二维码
您是第6970874位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!