基于回流多风扇主动控制引导风洞的风场模拟试验
CSTR:
作者:
作者单位:

1.国网福建省电力有限公司电力科学研究院,福州,350007;2.国网公司强台风环境抗风减灾实验室(培育),福州,350007;3.南京航空航天大学航空学院,南京,210016;4.南京航空航天大学机电学院,南京,210016

通讯作者:

姚裕,男,副研究员,E-mail: yy503@126.com。

中图分类号:

V211.7

基金项目:

国家重点研发计划 2018YFC0309100;国家自然科学基金 51375230;国家电网公司科技“强台风环境配电网风涝灾害预警及应急复电关键技术研究与示范应用” SGTYHT-16-JS-198;江苏省研究生科研与实践创新计划 KYCX19_0166国家重点研发计划(2018YFC0309100)资助项目;国家自然科学基金(51375230)资助项目;国家电网公司科技“强台风环境配电网风涝灾害预警及应急复电关键技术研究与示范应用”(SGTYHT-16-JS-198)资助项目;江苏省研究生科研与实践创新计划(KYCX19_0166)资助项目。


Wind Field Simulation in Small-Scale Model of Closed-Circuit Multiple Controlled Fan Wind Tunnel
Author:
Affiliation:

1.State Grid Fujian Electric Power Research Institute, Fuzhou, 350007, China;2.State Grid Cultivating Laboratory of;Wind Resistance and Disaster Mitigation Under Severe Typhoon Environment, Fuzhou, 350007, China;3.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China;4.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics,Nanjing, 210016, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了深入开展复杂建筑物及输配电线路的台风风荷载研究,提升复杂建筑物及输配电线路抗台风灾害的能力,拟研制一种回流多风扇主动控制风洞。为了突破回流多风扇主动控制风洞结构设计的关键技术,验证全尺寸风洞能否达到预期指标,研制了回流单动力段主动控制引导风洞。文中主要介绍了该引导风洞的结构设计和主动来流(均匀流场和湍流流场)模拟试验。试验结果表明:该引导风洞的最大风速达到18.2 m/s;正弦脉动流场风速为15.1 m/s(平均速度)±3.8 m/s(振幅)时,最大频率为7 Hz;正弦脉动风场模拟相似度高达94.3%。

    Abstract:

    The multiple controlled fan wind tunnel is designed to investigate the typhoon wind load and improve the resistance ability for complex buildings and transmission tower-line systems (TTLS). In order to achieve the key technology during the structure design of the full-scale wind tunnel, a small-scale model of the closed-circuit single controlled fan wind tunnel is established. The uniform and turbulence characteristics of the atmospheric boundary layer (ABL) in the small-scale wind tunnel are discussed. The obtained results show that the value of the maximum average wind speed can reach 18.2 m/s and the maximum circular frequency is 7 Hz. Meanwhile, the mean wind speed of the sinusoidal wave flow is 15.1 m/s at the peak of amplitude of 3.8 m/s. The generated sinusoidal wave flow has a high correlation coefficient at 94.3% with the target.

    参考文献
    [1] OZONO S, MIYAGI H, WADA K. Turbulence generated in active grid mode using a multi-fan wind tunnel[J]. Journal of Fluid Science & Technology, 2007, 2(3): 643-654.
    [2] SONG P Z. Simulation of atmospheric boundary layer in an open-loop wind tunnel using spire roughness element technique[D]. Windsor: University of Wind-sor, 2017.
    [3] SILL B L. Turbulent boundary layer profiles over uniform rough surfaces[J]. Journal of Wind Engineer-ing & Industrial Aerodynamics, 1988, 31(2): 147-163.
    [4] CERMAK J E. Progress in physical modeling for wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1995, 54/55(94): 439-455.
    [5] TEUNISSEN H W. Simulation of the planetary boundary layer in a multiple-jet wind tunnel[J]. Atmo-spheric Environment, 1972, 9(2): 145-174.
    [6] KAWATANI M, KIM H. Evaluation of aerodynamic admittance for buffeting analysis[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 41(1/2/3): 613-624.
    [7] NISHI A, KIKUGAWA H, MATSUDA Y, et al. Turbulence control in multiple-fan wind tunnels[J]. Jo-urnal of Wind Engineering & Industrial Aerodynami-cs, 1997, 67/68(4): 861-872.
    [8] ALY A M, BITSUAMLAK G T, CHOWDHURY A G. Full-scale aerodynamic testing of a loose concre-te roof paver system[J]. Engineering Structures, 2012, 44(6): 260-270.
    [9] SMITH J T, MASTERS F J, LIU Z, et al. A simplified approach to simulate prescribed boundary layer flow conditions in a multiple controlled fan wind tunnel[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2012, 109(4): 79-88.
    [10] BUTLER K, CAO S Y, KAREEM A, et al. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(6/7): 299-316.
    [11] TOSHIMITSU K, NARIHARA T, KIKUGAWA H, et al. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel[J]. Journal of Therm-al Science, 2017, 26(2): 113-118.
    [12] CAO S Y, NISHI A, KIKUGAWA H, et al. Reproduction of wind velocity history in a multiple fan wind tunnel[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(12/13/14/15): 1719-1729.
    [13] MOONEGHI M A, IRWIN P, CHOWDHURY A G. Large-scale testing on wind uplift of roof pavers[J]. Journal of Wind Engineering & Industrial Aerodynami-cs, 2014, 128(128): 22-36.
    [14] ALY A M, CHOWDHURY A G, BITSUAMLAK G. Wind profile management and blockage assessment for a new 12-fan wall of wind facility at FIU[J]. Wind & Structures An International Journal, 2011, 14(4): 285-300.
    [15] BAHERU T, CHOWDHURY A G, BITSUAMLAK G, et al. Simulation of wind-driven rain associated with tropical storms and hurricanes using the 12-fan wall of wind[J]. Building & Environ-ment, 2014, 76(6): 18-29.
    [16] FU T C, ALY A M, CHOWDHURY A G, et al. Proposed technique for determining aerodynamic pressures on residential homes[J]. Wind & Structures An International Journal, 2012, 15(1): 27-41.
    [17] MORRISON M J, BROWM T M, LIU Z Z. Comparison of field and full-scale laboratory peak pressures at the IBHS research center[C]//Proceed-ing of ATC and SEI Conference on Advances in Hurricane Engineering. Miami, Florida:
    [18] SMITH J T. Simulation of prescribed boundary flow conditions in a multiple controlled fan wind tunnel[D]. Gainesville, Florida: University of Florida, 2011.
    [19] STANDOHAR A C D, ESTES H, JOHNSTON T, et al. Reducing losses from wind-related natural perils: Research at the IBHS research center[J]. Frontiers in Built Environment, 2017(3): 1-19.
    [20] LIU Z Z, SMITH J, MASTERS F J, et al. Assessment of wind storm facility at the insurance center for building safety research[C]//The Seventh Asia-Pacific Conference on Wind Engineering. Taipei, China:
    [21] 曹曙阳, 朱乐东, 赵林. TJ-5多风扇主动控制风洞[EB/OL]. (2017-04-08) [2018-08-30]. http://mp.weixin.qq.com/s/idD-_ryEMW4GNwYMQHjx3Q, 2017.
    [22] CAO J X, CAO S Y, GE Y J. Characteristics and performances of a newly-built actively-controlled multiple-fan wind tunnel[C]//The 9th Asia-Pacific Conference on Wind Engineering. Auckland, New Zealand:
    [23] HUI Y, YOSHIDA A, TAMURA Y. Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients[J]. Journal of Fluids & Structures, 2013, 37(37): 120-133.
    [24] VARSHNEY K, PODDAR K. Experiments on integral length scale control in atmospheric boundary layer wind tunnel[J]. Theoretical & Applied Climat-ology, 2011, 106(1/2): 127-137.
    [25] CAO S Y, TAMURA Y, KIKUCHI N. A case study of gust factor of a strong typhoon[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 138: 52-60.
    [26] TORRIELLI A, REPETTO M P, SOLARI G. A refined analysis and simulation of the wind speed macro-meteorological components[J]. Journal of Wi-nd Engineering & Industrial Aerodynamics, 2014, 132(132): 54-65.
    相似文献
    引证文献
引用本文

陈彬,姚裕,易弢,李先影,王健.基于回流多风扇主动控制引导风洞的风场模拟试验[J].南京航空航天大学学报,2019,51(3):374-381

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-26
  • 最后修改日期:2019-01-23
  • 在线发布日期: 2019-10-08
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!