基于分区迭代推进方法的锥体热环境研究
作者:
作者单位:

1.南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京,210016;2.南京航空航天大学机械结构力学及控制国家重点实验室,南京,210016

作者简介:

通讯作者:

姚卫星,男,教授,博士生导师,E-mail:wxyao@nuaa.edu.cn。

中图分类号:

V475

基金项目:

江苏高校优势学科建设工程资助项目。


Thermal Environment of Cone Body Based onDivision Iterative Marching Method
Author:
Affiliation:

1.Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China;2.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对锥体热环境问题,提出了气动热与结构传热的分区迭代推进分析方法。其中流场采用有限体积法计算,空间离散采用AUSM+格式。时间推进采用显示多步Runge-Kutta格式,结构热传导采用有限元方法求解,而数据传递采用基于虚拟空间的插值方法。圆管验证算例分析显示,2 s时刻驻点处的热流密度和温度的计算值与试验值的相对误差分别为1.34%和4.95%。最后进行了直二次圆锥体的热环境分析,壁面初始热流密度值与试验值吻合得很好,其中驻点热流的计算值与试验值的相对误差为3.1%。耦合分析过程中驻点温度随时间的推移而升高,且上升趋势逐渐变缓,最终趋于稳态值。此外时间的变化对锥体表面压强的影响可忽略不计,而壁面热流却随时间的增加而降低。

    Abstract:

    The division iterative marching method on aerodynamic heating and structural heat transfer for the thermal environment of the cone body is presented. The flow field is calculated by the finite volume method. Spatial discretization scheme uses AUSM+. Explicit multi-step Runge-Kutta is used to calculate time iteration scheme. However, the structural heat transfer is calculated by the finite element method. Besides, the data exchange on the coupled wall is conducted by the interpolation method based on the virtual space. The verification example on the circular tube is analyzed, and the relative errors between the calculated values and corresponding test values for the heat flux and temperature of the stagnation point are 1.34% and 4.95% respectively at 2 s. Finally, the analysis on thermal environment of the straight biconic body is conducted. The initial wall heat flux is well matched with the experimental result, and the relative error between calculated value and experimental value at stagnation point is 3.1%. The temperature at the stagnation point increases with the time, and the upward trend slows down gradually. Finally it tends to the steady-state value. The time almost has no influence on the wall pressure, but the wall heat flux decreases with the increase of the time.

    参考文献
    相似文献
    引证文献
引用本文

黄杰,姚卫星.基于分区迭代推进方法的锥体热环境研究[J].南京航空航天大学学报,2019,51(1):91-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-07-25
  • 最后修改日期:2018-01-31
  • 录用日期:
  • 在线发布日期: 2019-03-30
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司