可重复使用飞行器脉动压力数值模拟研究
CSTR:
作者:
中图分类号:

V47


Numerical Simulation of Pressure Fluctuation on Reusable Space Vehicle
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    相对于传统火箭或导弹,可重复使用飞行器的脉动压力问题更为复杂、且相关研究较少。本文采用RANS/LES混合方法模拟了可重复使用飞行器在竖立状态、跨声速飞行、超声速飞行3类典型状态下的非定常流场,并提取了典型特征位置的脉动压力。计算结果显示,竖立状态下的脉动压力发生在背风区和分离点,声压级约115 dB,频率不超过1 Hz;跨声速飞行时的脉动压力发生在机翼和尾翼上的激波振荡区域,声压级高达140 dB,频率在10 Hz左右;超声速飞行时的脉动压力发生在飞行器机翼、副翼的下表面等迎风面上出现较强逆压梯度的区域,声压级也高达140 dB,频率约为22 Hz。此外,飞行器底部等容易发生分离的部位也是容易产生较强脉动压力的位置。

    Abstract:

    Compared with traditional rockets and missiles, pressure fluctuation problems of reusable space vehicle are more complicated and few researches were carried out. By introducing RANS/LES hybrid method, this paper simulates the unsteady flow field of reusable space vehicle under typical modes including vertical status, transonic flight and supersonic flight, and extracts fluctuating pressure data from typical characteristic positions. The computing results show that, under vertical status, pressure fluctuation occurs at leeward area and separation point, sound pressure level (SPL) is around 115 dB, and frequency is no more than 1 Hz; fluctuating pressure occurs within shock oscillation zone of wings and tails at transonic speeds, SPL is around 140 dB, and frequency is around 10 Hz; fluctuating pressure of supersonic flight happens at windward area of vehicle's wings and ailerons, where high adverse pressure gradient is observed, SPL is also around 140 dB, and frequency is around 22 Hz. Moreover, vehicle base where separation occurs also has stronger fluctuating pressure.

    参考文献
    [1] ROBERTSON J E. Prediction of in-flight fluctuating pressure environments including protuberance induced flow[R]. NASA-CR-119947, WR-71-10, 71N36677,1971.
    [2] 王发祥. 高速风洞试验[M]. 北京:国防工业出版社, 2003.
    [3] 黄寿康, 王玉堂. 流体力学弹道载荷环境[M]. 北京:中国宇航出版社, 1991.
    [4] 黄志澄. 航天空气动力学[M]. 北京:中国宇航出版社, 2009.
    [5] 刘振皓, 任方. 航天飞行器脉动压力数值计算方法综述[J]. 强度与环境, 2013, 40(6):45-50. LIU Zhenhao,REN Fang. Review on numerical computation of spacecraft pressure fluctuations[J]. Structure & Environment Engineering, 2013,40(6):45-50.
    [6] BAURLE R A, TAM C J, EDWARDS J R, et al. Hybrid simulation approach for cavity flows:Blending, algorithm, and boundary treatment Issues[J]. AIAA Journal, 2003, 41(8):1463-1480.
    [7] SANCHEZ-ROCHA M, KIRTAS M, MENON S. Zonal hybrid RANS-LES method for static and oscillating airfoils and wings[R]. AIAA 2006-1256, 2006.
    [8] LYNCH C E, SMITH M J. Hybrid RANS-LES turbulence models on unstructured grids[R]. AIAA 2008-3854, 2008.
    [9] MENTER F R, EGOROV Y. A scale-adaptive simulation model using two-equation models[R]. AIAA 2005-1095, 2005.
    [10] MENTER F R, KUNTZ M, BENDER R. A scale-adaptive simulation model for turbulent flow predictions[R]. AIAA 2003-0767, 2003.
    [11] KRISHNAN V, SQUIRES K D, Forsythe J R. Prediction of the flow around a circular cylinder at high Reynolds number[R]. AIAA 2006-0901, 2006.
    [12] XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
    [13] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications[R]. AIAA 2010-4001, 2010.
    [14] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
    [15] STRELETS M K. Detached eddy simulation of massively separated flows[R]. AIAA 2001-0879, 2001.
    [16] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
    [17] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
    [18] LORENZO A, VALERO E, DE-PABLO V. DES/DDES post-stall study with iced airfoil[R]. AIAA 2011-1103, 2011.
    [19] DECK S. Detached-eddy simulation of transonic buffet over a supercritical airfoil[R]. AIAA 2004-5378, 2004.
    [20] MORTON S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J]. Journal of Aircraft, 2009, 46(3):746-755.
    [21] 龙乐豪. 总体设计(上)[M]. 北京:中国宇航出版社, 1996.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘杰平, 石伟, 尚炜, 蔡巧言, 王飞, 刘周.可重复使用飞行器脉动压力数值模拟研究[J].南京航空航天大学学报,2018,50(S1):78-85

复制
分享
文章指标
  • 点击次数:1289
  • 下载次数: 2153
  • HTML阅读次数: 1341
  • 引用次数: 0
历史
  • 收稿日期:2018-03-23
  • 最后修改日期:2018-05-30
  • 在线发布日期: 2018-10-18
文章二维码
您是第6908456位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!