计入静位移作用的粘弹阻尼器双线性迟滞模型
CSTR:
作者:

Bilinear Hysteresis Model of Elastomeric Damper with Static Shift
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在传统的粘弹阻尼器双线性迟滞模型基础上,为了便于参数识别,将滑移迟滞恢复力等效成黏性阻尼力与分段线性弹性力的联合作用,引入指数衰减函数表征弹性力及阻尼力随激振幅值的变化规律,并导出了带静位移的粘弹阻尼器复模量计算模型。提出一种结合复模量及迟滞回线进行参数识别的方法,并通过实例验证了改进模型的准确性及参数识别法的有效性。分析了静位移对迟滞回线及复模量的影响,结果表明:静位移的变化使得迟滞回线沿弹性力曲线移动,并由于非线性刚度的影响,迟滞回线的形状也发生了变化;在模型采用奇次弹性力和线性黏性阻尼力的条件下,储能模量随着静位移的变化成偶次函数的趋势变化,而耗能模量则不受静位移的影响;静位移对储能模量和耗能模量的影响源于粘弹阻尼器刚度和阻尼关于位移的非线性特性。

    Abstract:

    Based on traditional bilinear hysteresis model of elastomeric damper, slide hysteresis force can be equivalent to viscous damping force and piecewise linear elastic force for identifying parameters easily, and decaying exponential function is introduced to indicate the changing rule of elastic force and damping force with excitation amplitude. Complex modulus model is established for elastomeric damper with static shift, and a parameter identification method on the basis of complex modulus and hysteresis loop is presented. Then the accuracy of improved model and effectiveness of parameter identification method are all validated by numerical examples. The influence of static shift on hysteresis loop and complex modulus are analyzed. The results show that:hysteresis loop moves along the elastic force curve with static shift changing, and the form of hysteresis loop changes on account of nonlinear stiffness. When the model uses odd order elastic force and linear damping force, storage modulus appears even order function changing with static shift, and loss modulus is invariant. The influence of static shift on storage modulus and loss modulus is attributed to nonlinear stiffness and damping with displacement.

    参考文献
    [1] 牛秉彝, 王元有, 黄人骏. 高聚物粘弹及断裂性能[M]. 北京:国防工业出版社, 1991:6-7.NIU Bingyi, WANG Yuanyou, HUANG Renjun. High polymer viscoelastic and fracture property[M]. Beijing:National Defence Industry Press, 1991:6-7.
    [2] ROSSIKHIN Y A, SHITIKOVA M V. Application of fraction calculus to dynamic problems of linear and nonlinear hereditary mechanics of solid[J]. Applied Mechanics Reviews, 1997, 50(1):15-67.
    [3] LESIEUTRE G A, BIANCHINI E. Time domain modeling of linear viscoelasticity using an elastic displacement fields[J]. Journal of Vibration and Acoustics, 1995, 117:424-430.
    [4] SMITH E C, GOVINDSWAMY K, BCALE M R, et al. Formulation, validation, and application of a finite element model for elastomeric lag dampers[J]. Journal of the American Helicopter Society, 1996, 43(3):257-266.
    [5] BRACKBILL C R, LESIEUTRE G A, SMITH E C, et al. Characterization and modeling of the low strain amplitude and frequency dependent behavior of elastomeric damper materials[J]. Journal of the American Helicopter Society, 2000, 47(1):34-42.
    [6] 李锐锐, 杨卫东, 虞志浩. 直升机旋翼多层层压黏弹阻尼器多参数动力学建模与分析[J]. 航空动力学报, 2014, 29(4):844-851.LI Ruirui, YANG Weidong, YU Zhihao. Multiple parameters dynamic modeling and analysis of helicopter rotor multi-layer elastomeric damper[J]. Journal of Aerospace Power, 2014, 29(4):844-851.
    [7] 李锐锐, 虞志浩, 杨卫东, 等. 直升机旋翼黏弹阻尼器时域动力学建模与分析[J]. 航空学报, 2015, 36(6):1905-1914.LI Ruirui, YU Zhihao, YANG Weidong, et al. A time-domain computational method for dynamic properties and analysis of helicopter rotor elastomeric damper[J]. ACTA Aeronautica et Astronautica Sinica, 2015, 36(6):1905-1914.
    [8] CAUGHEY T K. Equivalent linearization techniques[J]. Journal of the Acoustical Society of America, 1963, 35(11):1706-1711.
    [9] BOUC R. Forced vibration of mechanical system with hysteresis[C]//Proceedings of 4th Conference on Nonlinear Oscillation. Prague:[s.n.], 1967.
    [10] WEN Y K. Method for random vibration of hysteretic systems[J]. Journal of Applied Mechanics, 1976, 102:249-263.
    [11] FELKER F F, LAU B H, MCLAUGHLIN S, et al. Nonlinear behavior of an elastomeric lag damper undergoing dual-frequency motion and its effect on rotor dynamics[J]. Journal of the American Helicopter Society, 1987, 34(4):45-53.
    [12] KUNZ D L. Influence of elastomeric lag damper modeling on the predicted dynamic response of helicopter rotor systems[C]//Proceedings of 38th Structures, Structural Dynamics and Materials Conference. Florida:AIAA/ASME/ASCE/AHS/ASC, 1997:1-11.
    [13] 胡国才, 侯志强. 一种基于复模量的粘弹减摆器非线性VKS改进模型[J]. 工程力学, 2005, 22(S1):73-77.HU Guocai, HOU Zhiqiang. An improved nonlinear VKS model of elastomeric lag damper based on its complex modulus[J]. Engineering Mechanics, 2005, 22(S1):73-77.
    [14] 李冬伟, 白鸿柏, 杨建春,等. 非线性迟滞系统建模方法[J]. 机械工程学报, 2005, 41(10):205-214.LI Dongwei, BAI Hongbai, YANG Jianchun, et al. Modeling of a nonlinear system with hysteresis characteristics[J]. Chinese Journal of Mechanical Engineering, 2005, 41(10):205-214.
    [15] 于佰明, 韩景龙. 一种直升机粘弹减摆器时域模型参数识别方法[J]. 南京航空航天大学学报, 2003, 35(3):288-292.YU Baiming, HAN Jinglong. A time-domain methodology for identifying model parameters of elastomeric lag dampers[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3):288-292.
    引证文献
引用本文

吴靖, 胡国才, 刘湘一, 于仁业.计入静位移作用的粘弹阻尼器双线性迟滞模型[J].南京航空航天大学学报,2018,50(2):221-226

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-15
  • 最后修改日期:2018-02-15
  • 在线发布日期: 2018-04-25
文章二维码
您是第6938860位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!