云制造资源的工序级多目标调度方法研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Multi-objective Process Scheduling of  Cloud Manufacturing Resources
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于云制造资源的分散性、多样性、负载率不均衡性等特点对其调度与调度粒度有更高的要求,将云制造任务分解后的工序作为调度的最小粒度,构建一种以最短制造服务时间、最低制造服务成本以及均衡负载率为多目标的云制造资源工序级调度模型,采用以粒子群、遗传相结合的混合多目标调度算法,将遗传算法中通过双层编码的染色体作为粒子群算法的粒子,双层编码方式是指以工序加工顺序作为第一层、工序对应加工资源编号为第二层,随后通过对染色体交叉变异进行粒子更新,使整个调度过程快速收敛于全局最优解。最后电梯实例证明了该算法能在较短的时间内给出最优的调度方案,从 而有效地解决云制造资源多目标调度问题。

    Abstract:

    Cloud manufacturing resources have high demands for scheduling and scheduling granularity because of its dispersion, diversity and load ration imbalances, etc. In this paper, a new multi-objective model for manufacturing resources process scheduling is proposed. The model decomposes the manufacturing task into process as scheduling minimum granularity to minimize the total time of manufacturing service, the total cost of manufacturing services and the balanced load rate. The new model adopts hybrid algorithm which combines genetic algorithm(GA) and particle swarm optimization (PSO), uses the chromosomes of GA as particles in the hybrid algorithm, and carries out the double-layer coding by using the processing order as the first layer and the corresponding processing resource number as the second layer. Then particles are by the updated crossover and mutation of chromosomes to achieve a faster and more accurate optional solution for the algorithm converges. At last, the example of elevator proves that the new model can get optional scheduling scheme in a short time and effectively solve the multi-objective scheduling problem for cloud manufacturing resource.

    参考文献
    相似文献
    引证文献
引用本文

孙卫红吴海元吕文新高一聪.云制造资源的工序级多目标调度方法研究[J].南京航空航天大学学报,2017,49(6):773-778

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-01-09
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司