基于动态频域卷积的SAR目标检测
DOI:
CSTR:
作者:
作者单位:

1.中国航空工业集团公司雷华电子技术研究所;2.南京航空航天大学航天学院

作者简介:

通讯作者:

中图分类号:

TP753

基金项目:

国家自然基金面上项目(62471224)


SAR Target Detection Based on Dynamic Frequency Convolution
Author:
Affiliation:

1.Leihua Electronic Technology Research Institute,Aviation Industry Corporation of China;2.Nanjing University of Aeronautics and Astronautics,College of Astronautics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于合成孔径雷达具有特殊的成像机制与电磁散射特性,导致其采集的图像常伴随强散斑噪声和复杂背景干扰,进而严重制约了针对该类图像的目标检测的精度与鲁棒性。为进一步降低噪声干扰并解决现有方法在多尺度特征建模不足以及频域信息利用有限的问题,本文提出一种融合频域动态卷积与空–频特征增强的SAR目标检测网络。首先,引入了动态频域卷积模块,通过可学习的傅里叶谱系数和分组重构卷积核,结合特征修复机制实现对高低频成分的自适应调制,从而提升了卷积核的频带响应多样性与干扰条件下的特征表达能力。随后,通过联合频率自注意力与空间自注意力机制以及空频融合策略构建了空–频特征增强模块,实现了目标特征的增强。实验结果表明,所提方法在MSAR与SARDet-100K数据集上相较于DenoDet、FCOS、PVT-T、Faster R-CNN和YOLOF等代表性方法,在多项评价指标上均取得了显著提升,展现出更高的检测精度、鲁棒性与良好的泛化能力,为SAR图像目标检测提供了一种新的解决思路。

    Abstract:

    Due to the unique imaging mechanism and electromagnetic scattering characteristics of synthetic aperture radar (SAR), the images it acquires are often contain strong speckle noise and complex background interference, which severely limit object detection accuracy and robustness. To mitigate noise and address the limitations of insufficient multi-scale feature modeling and limited frequency information usage in existing methods, this paper proposes a SAR object detection network combining frequency dynamic convolution with spatial-frequency feature enhancement. A dynamic frequency-domain convolution module is first introduced, which adaptively modulates high and low frequency components via learnable Fourier coefficients and grouped reconstructed convolution kernels, combined with a feature restoration module, enriching the diversity of the kernel’s frequency responses and enhancing the capability of feature representation. A spatial-frequency feature enhancement module is then constructed using joint frequency and spatial self-attention with a spatial-frequency fusion strategy, enhancing the features of targets. Experiments on MSAR and SARDet-100K datasets demonstrate that, compared with DenoDet, FCOS, PVT-T, Faster R-CNN, and YOLOF, the proposed method achieves significant improvements across multiple evaluation metrics and shows higher detection accuracy, robustness, and generalization, offering a new approach for SAR image object detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-17
  • 最后修改日期:2026-01-09
  • 录用日期:2026-01-07
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司