基于凸差分的无人机分簇融合协同定位算法
DOI:
CSTR:
作者:
作者单位:

1.南京航空航天大学公共实验教学部;2.南京航空航天大学电子信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目,基于数字孪生的有人机/无人机混合电磁战集群智能协同理论研究,62371232,2024.1-2027.12


Cluster-Based Cooperative Localization Algorithm for UAVs Based on Difference-of-Convex Programming
Author:
Affiliation:

1.Fundamental Experimental Teaching Department,Nanjing University of Aeronautics and Astronautics;2.China College of Electronic Information Engineering,Nanjing University of Aeronautics and Astronautics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机集群定位精度要求高、计算复杂度大的问题,提出了一种基于凸差分( Difference-of-Convex, DC )的无人机分簇融合协同定位算法。首先建立了基于位置信息的协同定位数学模型,然后按照凸优化算法结构,将非凸约束转化为差分形式目标函数,提升位置信息解的精度。接着为优化迭代过程利用多维尺度分析( Multidimensional Scaling, MDS )方法提供初始位置估计,并将初始化过程加入每轮簇内定位过程。进而分析带有测距误差情况下的定位算法,利用最大似然估计改写目标函数,减小定位误差完成位置估计。随后提出了分簇融合方法,借助公共结点和Procrustes分析算法实现全局定位。通过仿真实验测量算法定位误差,与常见定位算法进行比较验证算法有效性。结果表明,所提出的算法具有定位精度高、收敛速度快、适合多无人机网络的特点,能有效提高无人机集群定位性能。

    Abstract:

    To address the challenges of high positioning accuracy requirements and significant computational complexity in UAV swarm localization, a cluster-based cooperative localization algorithm for UAVs based on Difference-of-Convex (DC) programming is proposed. First, a cooperative localization mathematical model based on positional information is established. Then, following the structure of convex optimization algorithms, the non-convex constraints are transformed into a difference-of-convex objective function to enhance the accuracy of the position solution. To optimize the iterative process, the Multidimensional Scaling (MDS) method is used to provide an initial position estimate, and this initialization step is incorporated into each round of intra-cluster localization. The algorithm is further analyzed under the condition of ranging errors. The objective function is reformulated using Maximum Likelihood Estimation (MLE) to reduce positioning errors and improve location estimation accuracy. Subsequently, a cluster fusion method is introduced, which utilizes common nodes and the Procrustes analysis algorithm to achieve global localization. Simulation experiments are conducted to measure localization errors, and comparisons with commonly used localization algorithms are made to validate the effectiveness of the proposed method. The results demonstrate that the proposed algorithm features high localization accuracy, fast convergence, and is well-suited for multi-UAV networks, effectively enhancing the localization performance of UAV swarms.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-03
  • 最后修改日期:2025-12-31
  • 录用日期:2025-12-31
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司