基于多策略改进鸽群优化算法的机器人路径规划研究
DOI:
CSTR:
作者:
作者单位:

1.安徽工程大学机械与汽车工程学院;2.长三角哈特机器人产业技术研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

安徽省高校优秀拔尖人才培育项目(gxbjZD2022023)


Research on Robot Path Planning Based on Multi-strategy Improved Pigeon-Inspired Optimization Algorithm
Author:
Affiliation:

1.School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Anhui;2.Yangtze River Delta Hart Robot Industry Technology Research Institute,Anhui

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于传统鸽群优化算法在处理高维优化问题时存在的局限性,提出一种改进的螺旋-动态鸽群优化算法,用于解决机器人路径规划问题中的收敛速度慢和易陷入局部最优解等问题。首先,通过引入Logistic混沌映射初始化策略以扩大搜索范围;其次,设计螺旋搜索策略和动态反向学习策略以改进位置更新机制,提高算法的收敛速度和解的质量;同时,采用自适应余弦函数调整反向学习权重与改进地标操作提高算法的自适应能力与全局搜索能力。通过对10个CEC2017基准测试函数的实验, 有效地评估了算法的性能。最后,将MSDPIO与基于改进的B样条曲线应用于不同尺度(20×20与40×40)地图的路径规划问题。仿真结果表明:在小规模20×20地图中较PIO?MSIAO?GWO路径长度分别改进1.46%?4.67%?1.43%;在大规模40×40地图中收敛性能最大提升37.82%。

    Abstract:

    Based on the limitations of traditional pigeon swarm optimization algorithms in dealing with high-dimensional optimization problems, a Modified Spiral-Dynamic Pigeon-Inspired Optimization (MSDPIO) is proposed to solve problems such as slow convergence speed and susceptibility to local optima in robot path planning. Firstly, by introducing the Logistic chaotic mapping initialization strategy, the search range is expanded; Secondly, design spiral search strategies and dynamic reverse learning strategies to improve the position update mechanism and enhance the convergence speed and resolution quality of the algorithm; At the same time, the adaptive cosine function is used to adjust the reverse learning weights and improve landmark operations to enhance the algorithm's adaptive and global search capabilities. The performance of the algorithm is effectively evaluated through experiments on 10 CEC2017 benchmark test functions. Applying MSDPIO and improved B-spline curves to path planning problems on maps of different scales (20 × 20 and 40 × 40), simulation results show that in a small-scale 20 × 20 map, MSDPIO improves the path length by 1.46%, 4.67%, and 1.43% compared to PIO, MSIAO, and GWO, respectively. The maximum convergence performance improvement in a large-scale 40 × 40 map is 37.82%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-09
  • 最后修改日期:2025-03-17
  • 录用日期:2025-06-16
  • 在线发布日期:
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司