数据缺失下的航班地面保障关键环节时间预测
CSTR:
作者:
作者单位:

1.南京航空航天大学民航学院,南京 211106;2.中国国际航空股份有限公司地面服务部枢纽运行中心, 北京 101300

作者简介:

通讯作者:

吴薇薇,女,教授,博士生导师,E-mail:nhwei@nuaa.edu.cn。

中图分类号:

V351.11;U8

基金项目:

国家自然科学基金(U2033205,U1933118);民航局安全能力专项项目(1007-IMH22004);南京航空航天大学科研基金(1007-YAT23021)。


Time Prediction of Key Links in Flight Ground Support Under Missing Data
Author:
Affiliation:

1.College of Civil Aviation, Nanjing University of Aeronautics & Astronautics, Nanjing 211106, China;2.Hub Operation Center, Ground Services Department, Air China Limited, Beijing 101300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测航班地面保障关键环节时间可以更高效地为航班过站做好保障工作,实现航班精细化管理。在实际航班运行生产过程中,保障数据缺失与异常普遍发生。传统预测模型在面对数据缺失挑战时,其预测性能往往遭受显著制约。为克服此局限,在因果图卷积网络(Causal graph convolutional network, CGCN)的基础上,引入动态时间规整(Dynamic time warping, DTW)模块,构建了面向数据缺失场景的航班保障时间节点预测模型。通过缺失值的自主式处理与时空特征的深入挖掘,为数据缺失下的航班地面保障时间预测提供了一种更为有效的解决方案。以国内某大型机场航班保障数据集(共6 480条数据)为例进行验证,实验结果表明:与考虑缺失值的因果图卷积网络(Causal graph convolutional network with missing data, CGCNM)、动态时空图卷积神经网络(Dynamic spatial-temporal graph convolution network, DSTGCN)、贝叶斯时间因子矩阵分解(Bayesian temporal matrix factorization, BTMF)、长短期记忆网络(Long short-term memory, LSTM)等7种基准模型相比,所提模型在20%~80%缺失率的场景下,各保障时间节点预测结果的平均绝对误差(Mean absolute error, MAE)至少降低8.1%,均方根误差(Root mean square error, RMSE)至少降低4.6%;且随着缺失率的增加,所提模型的优势更加明显。实例证明,建立的考虑缺失值的航班地面保障时间预测模型在预测精度和预测稳定性上都优于上述基准模型,能够为机场保障运行提供客观可靠的决策依据。

    Abstract:

    Accurate flight ground service time prediction can improve the flight transit efficiency and realize flight refinement management. However, the lack and abnormality of relevant data make the research more challenging in real scenarios. To this end, a flight ground service time prediction model considering missing values is proposed. A dynamic time warping(DTW) algorithm is introduced on the basis of the causal graph convolutional network (CGCN) to realize the prediction of flight ground service link time under different data missing modes and missing rates. The flight support dataset (6 480 items) of a large airport in China is used as an example for validation. The results show that the proposed model can maintain high prediction performance under conditions of 20%—80% missing rates, compared with the remaining seven benchmark models including causal graph convolutional network with missing data (CGCNM), dynamic spatial-temporal graph convolution network (DSTGCN), Bayesian temporal matrix factorization (BTMF), long short-term memory (LSTM), etc. The mean absolute error (MAE) of the prediction results for each service time node is reduced by more than 8.1%, and the root-mean-square error (RMSE) is reduced by more than 4.6%. The experiment demonstrates that the proposed model is better than the baseline model in terms of prediction accuracy and prediction stability. It can provide an objective and reliable decision-making basis for flight support operations.

    参考文献
    相似文献
    引证文献
引用本文

顾思诗,吴薇薇,蒋燕,张皓瑜.数据缺失下的航班地面保障关键环节时间预测[J].南京航空航天大学学报,2025,57(2):349-360

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2024-12-17
  • 录用日期:
  • 在线发布日期: 2025-04-25
  • 出版日期:
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司