航空航天材料磁控焊接技术综述
作者:
作者单位:

兰州理工大学 省部共建有色先进加工与再利用国家重点实验室,兰州 730050

作者简介:

李富祥,男,博士,讲师,主要从事高效智能焊接及金属增材制造相关研究工作,发表高水平学术论文20余篇,申请国家发明专利10余件。主持/参与国家级、省部级,企业横向课题7项。E-mail: lifuxiang163wy@163.com。

通讯作者:

李富祥,男,博士,讲师,E-mail: lifuxiang163wy@163.com。

中图分类号:

TG442

基金项目:

甘肃省青年科技基金(25JRRA097);国家自然科学基金(52461009)。


Review on Magnetically Controlled Welding Technology for Aerospace Materials
Author:
Affiliation:

State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [77]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    磁控焊接技术作为一种高效、高质量的金属焊接方法,在航空航天材料加工领域具有广泛的应用前景。本文综述了磁控焊接的基本原理、技术分类、航空航天材料的应用以及研究现状与发展趋势。通过分析磁控焊接对电弧形态、熔滴过渡、熔池流动及凝固过程的影响,探讨了其在提高焊缝成形质量、增强力学性能方面的优势。同时,结合具体案例和数据分析,展望了磁控焊接技术在航空航天工业中的未来发展。

    Abstract:

    Magnetically controlled welding technology, as an efficient and high-quality metal welding method, possesses broad application prospects in the field of aerospace material processing. This paper provides a comprehensive review on the basic principles, technical classifications, applications in aerospace materials, as well as the current research status and development trends of magnetically controlled welding. By analyzing the impact of magnetically controlled welding on arc morphology, droplet transfer, molten pool flow, and solidification processes, the advantages of this technology in improving weld bead formation quality and enhancing mechanical properties are explored. Furthermore, with specific case studies and data analysis, the future development of magnetically controlled welding technology in the aerospace industry is identified.

    参考文献
    [1] 王立军, 贾申利, 史宗谦, 等. 电弧电流以及纵向磁场对小电流真空电弧特性影响的数值仿真[J]. 电工技术学报, 2007, 22(1): 54-61.WANG Lijun, JIA Shenli, SHI Zongqian, et al. Numerical Simulation of the influence of arc current and longitudinal magnetic field on the characteristics of low-current vacuum arcs[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 54-61.
    [2] 胡明, 万树德, 夏洋洋, 等. 外部磁场对直流电弧等离子体放电特性的影响及其机理[J]. 高电压技术, 2013, 39(7): 1655-1660.HU Ming, WAN Shude, XIA Yangyang, et al. Influence and mechanism of external magnetic field on the discharge characteristics of DC arc plasma[J]. High Voltage Engineering, 2013, 39(7): 1655-1660.
    [3] 吴林, 张广军. 航空航天焊接若干新技术进展[C]//航空航天焊接国际论坛. 北京, 中国: 中国机械工程学会, 2004.WU Lin, ZHANG Guangjun. Progress in several new technologies for aerospace welding[C]//Proceedings of International Forum on Aerospace Welding. Beijing, China: Chinese Mechanical Engineering Society, 2004.
    [4] ELREFAEY A. 11 High-temperature brazing in aerospace engineering[J]. Welding & Joining of Aerospace Materials, 2012, 49(1): 345-383.
    [5] FREEMAN R .Welding and joining developments in the aerospace industry[J].Welding and Cutting, 2008, 7(5): 274-275.
    [6] 马青军, 韦晨, 方乃文, 等. 磁控焊接技术的研究现状[J]. 机械制造文摘(焊接分册), 2019, 47(1): 8-13, 31.MA Qingjun, WEI Chen, FANG Naiwen, et al. Research status of magnetically controlled welding technology[J]. Machinery Manufacturing Digest(Welding Edition), 2019, 47(1): 8-13, 31.
    [7] 贾思峰, 郑卫刚. 磁控技术在窄间隙焊接和高速TIG焊接上的应用研究[J]. 热加工工艺, 2013, 42(13): 154-155.JIA Sifeng, ZHENG Weigang. Application research of magnetic control technology in narrow gap welding and high-speed TIG welding[J]. Hot Working Technology, 2013, 42(13): 154-155.
    [8] LIU Y B, SUN Q J, LIU J P, et al. Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel[J]. Materials Letters, 2015, 152: 29-31.
    [9] WANG L, CHEN J, WU C S, et al. Backward flowing molten metal in weld pool and its influence on humping bead in high-speed GMAW[J]. Journal of Materials Processing Technology, 2016, 237: 342-350.
    [10] NOMURA K, OGINO Y, HIRATA Y. Shape control of TIG arc plasma by cusp-type magnetic field with permanent magnet[J]. Welding International, 2012, 26(10): 759-764.
    [11] SUN Q J, WANG J F, CAI C W, et al. Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1): 761-767.
    [12] XIAO L, FAN D, HUANG J K, et al. Mild steel metal rotating spray transfer behavior in magnetically controlled gas metal arc welding[J]. Materials Today Communications, 2022, 31: 103352.
    [13] WANG X M, LIANG W, SUN S H. The influence of rotating magnetic field on DCEN MAG industry welding based on properties of welding materials[J]. Advanced Materials Research, 2013, 675: 148-151.
    [14] XU T, SHI Y H, CUI Y X, et al. Effects of magnetic fields in arc welding, laser welding, and resistance spot welding: A review[J]. Advanced Engineering Materials, 2023, 25(5): 2200682.
    [15] FAN D, WANG Y Z, ZHANG C, et al. Numerical analysis of arc-droplet-pool coupling behavior in magnetically controlled high current MIG welding[J]. Journal of Manufacturing Processes, 2024, 126: 402-412.
    [16] LI Y W, ZOU W F, LEE B, et al. Research progress of aluminum alloy welding technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5): 1207-1218.
    [17] LI Y, WU C S, WANG L, et al. Analysis of additional electromagnetic force for mitigating the humping bead in high-speed gas metal arc welding[J]. Journal of Materials Processing Technology, 2016, 229: 207-215.
    [18] WANG L, WU C S, CHEN J, et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1282-1291.
    [19] 江淑园, 陈焕明, 刘志凌. 磁控技术在焊接中的应用及进展[J]. 中国机械工程, 2002, 13(21): 1876-1879.JIANG Shuyuan, CHEN Huanming, LIU Zhiling. Application and progress of magnetically controlled technology in welding[J]. China Mechanical Engineering, 2002, 13(21): 1876-1879.
    [20] 张新戈, 王群, 李俐群, 等. 电、磁场辅助激光焊接的研究现状[J]. 材料导报, 2009, 23(9): 39-42.ZHANG Xinge, WANG Qun, LI Liqun, et al. Research status of electric and magnetic field-assisted laser welding[J]. Materials Review, 2009, 23(9): 39-42.
    [21] WANG C M, CHEN H W, ZHAO Z Y, et al. Influence of axial magnetic field on shape and microstructure of stainless steel laser welding joint[J].The International Journal of Advanced Manufacturing Technology, 2017, 91(9): 3051-3060.
    [22] MOUSAVI M G, HERMANS M J M, RICHARDSON I M, et al. Grain refinement due to grain detachment in electromagnetically stirred AA7020 welds[J]. Science and Technology of Welding and Joining, 2003, 8(4): 309-312.
    [23] TURYK E. Electromagnets for the induction of a magnetic field into the welding zone in TIG welding[J].Welding International, 1993, 7(12): 929-931.
    [24] BACHMANN M, AVILOV V, GUMENYUK A, et al. About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. International Journal of Heat and Mass Transfer, 2013, 60: 309-321.
    [25] CHEN R, KONG H J, LUAN J H, et al. Effect of external applied magnetic field on microstructures and mechanical properties of laser welding joint of medium-Mn nanostructured steel[J]. Materials Science & Engineering: A, 2020, 792: 139787.
    [26] 陈杰, 王小明, 张振兵, 等. 新型磁控-TIG电弧熔-钎焊技术[J]. 电焊机, 2012, 42(6): 129-132.CHEN Jie, WANG Xiaoming, ZHANG Zhenbing, et al. A novel magnetically controlled-TIG arc fusion-brazing technique[J]. Electric Welding Machine, 2012, 42(6): 129-132.
    [27] 贾传宝, 杜永鹏, 武传松, 等. 厚板窄间隙磁控电弧TIG焊接自动控制系统设计[J]. 华南理工大学学报(自然科学版), 2017, 45(9): 40-46.JIA Chuanbao, DU Yongpeng, WU Chuansong, et al. Design of automatic control system for thick plate narrow gap magnetically controlled arc TIG welding[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(9): 40-46.
    [28] 张九海, 王其隆, 韦伟平. 小电流TIG焊电弧磁控特性的研究[J]. 焊接学报, 1990, 11(1): 43-49.ZHANG Jiuhai, WANG Qilong, WEI Weiping. A study of the characteristics of magnetic control for low crrent TIG welding[J]. Transactions of the China Welding Institution, 1990, 11(1): 43-49.
    [29] 常云龙, 路林, 李英民, 等. 磁控TIG高速焊焊缝成形机理[J]. 焊接学报, 2013, 34(6): 1-4, 113.CHANG Yunlong, LU Lin, LI Yingmin, et al. Mechanism of weld formation in magnetically controlled TIG high-speed welding[J]. Transactions of the China Welding Institution, 2013, 34(6): 1-4, 113.
    [30] 贾涵浩, 马春伟, 韩宁. 外加横向磁场在焊接中的应用及发展[J]. 热加工工艺, 2016, 45(5): 14-15, 19.JIA Hanhao, MA Chunwei, HAN Ning. Application and development of externally applied transverse magnetic fields in welding[J]. Hot Working Technology, 2016, 45(5): 14-15, 19.
    [31] REIS R P, SCOTTI A, NORRISH J, et al. Investigation on welding arc interruptions in the presence of magnetic fields: Arc length, torch angle and current pulsing frequency influence[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 133-139.
    [32] XIAO L, FAN D, HUANG J K. Tungsten cathode-arc plasma-weld pool interaction in the magnetically rotated or deflected gas tungsten arc welding configuration[J]. Journal of Manufacturing Processes, 2018, 32: 127-137.
    [33] 常云龙, 白金, 刘丹, 等. 纵向磁场对CO2焊接电弧及焊缝成形的影响[J]. 沈阳工业大学学报, 2016, 38(6): 612-617.CHANG Yunlong, BAI Jin, LIU Dan, et al. The influence of longitudinal magnetic field on CO2 welding arc and weld formation[J]. Journal of Shenyang University of Technology, 2016, 38(6): 612-617.
    [34] JANARTHINI M S, BARATH C V R, RAMACHANDRAN K. Behavior of plasma parameters under mirror and cusp magnetic fields in DC glow discharge-a numerical study[J]. Physica Scripta, 2024, 99(12): 125604.
    [35] 解晓梅, 陈集, 夏萍. 尖状磁场约束等离子弧的实验研究[J]. 齐齐哈尔轻工业学院学报, 1996(1): 56-59, 62.XIE Xiaomei, CHEN Ji, XIA Ping. Experimental study on plasma arc confined by pointed magnetic field[J]. Journal of Qiqihar Institute of Light Industry, 1996(1): 56-59, 62.
    [36] 刘翠荣, 赵彭生. 双尖角磁场再压缩等离子弧厚板焊接[J]. 山西机械, 1998(4): 21-23.LIU Cuirong, ZHAO Pengsheng. Thick plate welding using double-pointed magnetic field recompressed plasma arc[J]. Shanxi Machinery, 1998(4): 21-23.
    [37] 蒋萍, 高顶, 王村伟, 等. 电磁场对CO2焊电弧及熔滴过渡的影响[J]. 热加工工艺, 2011, 40(5): 137-139, 143.JIANG Ping, GAO Ding, WANG Cunwei, et al. The influence of electromagnetic field on CO2 welding arc and droplet transfer[J]. Hot Working Technology, 2011, 40(5): 137-139, 143.
    [38] AMBROSY G, BERGER P, HUEGEL H, et al. The use of electromagnetic body forces to enhance the quality of laser welds[C]//Proceedings of XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Wroclaw, Poland: SPIE, 2003.
    [39] KUTSUNA M, CHEN L. INTERACTION OF BOTH PLASMAS IN CO2 LASER-MAG HYBRID WELDING OF CARBON STEEL[C]//Proceedings of the FIRST INTERNATIONAL SYMPOSIUM ON HIGH-POWER LASER MACROPROCESSING. OSAKA, JAPAN: SPIE, 2003.
    [40] SUN Q J, LI J Z, LIU Y B, et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J]. Journal of Manufacturing Processes, 2018, 32: 48-56.
    [41] 常云龙, 车小平, 李敬雅, 等. 外加磁场对MIG焊熔滴过渡形式和焊缝组织性能的影响[J]. 焊接, 2008, 52(10): 25-28, 70.CHANG Yunlong, CHE Xiaoping, LI Jingya, et al. Influence of external magnetic field on droplet transfer mode and weld microstructure and properties in MIG welding[J]. Welding, 2008, 52(10): 25-28, 70.
    [42] ZHU S, WANG Q W, YIN F L, et al. Research on droplet transfer of MIG welding with alternating longitudinal magnetic field[J]. Advanced Materials Research, 2011, 189: 993-996.
    [43] 张顺善, 邹勇, 邹增大. 磁场对双丝间接电弧焊熔滴过渡的影响[J]. 焊接学报, 2011, 32(6): 69-72, 116.ZHANG Shunshan, ZOU Yong, ZOU Zengda. Influence of magnetic field on droplet transfer in twin-wire indirect arc welding[J]. Transactions of the China Welding Institution, 2011, 32(6): 69-72, 116.
    [44] 杨文艳, 樊丁, 张俊喜, 等. 外加磁场对TIG焊电弧行为及焊缝成形的影响[J]. 兰州工业学院学报, 2023, 30(2): 6-9.YANG Wenyan, FAN Ding, ZHANG Junxi, et al. Influence of external magnetic field on TIG welding arc behavior and weld formation[J]. Journal of Lanzhou Institute of Technology, 2023, 30(2): 6-9.
    [45] ZHU S, WANG Q, YIN F, et al. Research on thermal process of MIG welding of aluminum alloy with longitudinal magnetic field[J]. The Open Mechanical Engineering Journal, 2011, 5(1): 32-38.
    [46] YAMAMOTO H, HARADA S, UEYAMA T, et al. Beneficial effects of low-frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification crack susceptibility of aluminium alloys: Study of low-frequency pulsed MIG welding[J]. Welding International, 1993, 7(6): 456-461.
    [47] GUAN Z Q, ZHANG H X, LIU X G, et al. Effect of magnetic field frequency on the shape of GMAW welding arc and weld microstructure properties[J]. Materials Research Express, 2019, 6(8): 0865e5.
    [48] LI F X, SUN Q J, JIN P, et al. Wetting behavior of melt and its effect on lack of fusion in arc oscillating NG-GTAW[J]. Journal of Materials Processing Technology, 2021, 296: 117176.
    [49] WANG L, WU C S, CHEN J, et al. Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1282-1291.
    [50] ZHOU J F, ZHOU D W, LIU J S. Numerical and experimental investigation of magnesium/aluminum laser welding with magnetic field[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1): 545-559.
    [51] RYAN P, PRANGNELL P B. Grain structure and homogeneity of pulsed laser treated surfaces on Al-aerospace alloys and FSWs[J]. Materials Science and Engineering: A, 2008, 479(1): 65-75.
    [52] COSTA A P DA, BOTELHO E C, COSTA M L, et al. A review of welding technologies for thermoplastic composites in aerospace applications[J]. Journal of Aerospace Technology and Management, 2012, 4(3): 255-266.
    [53] SEXTON L, LAVIN S, BYRNE G, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, 122(1): 63-68.
    [54] VAIRIS A, FROST M. High frequency linear friction welding of a titanium alloy[J]. Wear, 1998, 217(1): 117-131.
    [55] ZAHS A, SPIEGEL M, GRABKE H J. Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400—700 ℃[J]. Corrosion Science, 2000, 42(6): 1093-1122.
    [56] SUNDARESAN S, RAM G D J. Use of magnetic arc oscillation for grain refinement of gas tungsten arc welds in α-β titanium alloys[J]. Science and Technology of Welding and Joining, 1999, 4(3): 151-160.
    [57] 王立祥, 苏允海. 磁场电流对 TA2 钛合金焊接接头组织和性能的影响[J]. 热加工工艺, 2015, 44(11): 236-238.WANG Lixiang, SU Yunhai. Influence of magnetic field current on the microstructure and properties of TA2 titanium alloy welded joints[J]. Hot Working Technology, 2015, 44(11): 236-238.
    [58] SUN Q J, LI J Z, LIU Y B, et al. Narrow gap welding for thick titanium plates: A review[C]//Proceedings of Transactions on Intelligent Welding Manufacturing. Singapore: Springer, 2019: 29-54.
    [59] 孙清洁, 郭宁, 胡海峰, 等. 磁场对厚板Ti-6Al-4V合金窄间隙TIG焊缝组织的影响[J]. 中国有色金属学报, 2013, 23(10): 2833-2839.SUN Qingjie, GUO Ning, HU Haifeng, et al. Influence of magnetic field on the microstructure of narrow gap TIG welds in thick Ti-6Al-4V alloy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(10): 2833-2839.
    [60] 孙清洁, 李文杰, 胡海峰, 等. 厚板Ti-6Al-4V磁控窄间隙TIG焊接头性能[J].焊接学报, 2013, 34(2): 9-12, 113.SUN Qingjie, LI Wenjie, HU Haifeng, et al. Properties of magnetically controlled narrow gap TIG welded joints in thick Ti-6Al-4V alloy[J]. Transactions of the China Welding Institution, 2013, 34(2): 9-12, 113.
    [61] 唐思熠, 张学军, 郭绍庆, 等. 航空铝合金激光焊接的研究进展[J]. 电焊机, 2014, 44(6): 7-12.TANG Siyi, ZHANG Xuejun, GUO Shaoqing, et al. Research progress in laser welding of aerospace aluminum alloys[J]. Electric Welding Machine, 2014, 44(6): 7-12.
    [62] 陈亚莉. 铝合金在航空领域中的应用[J]. 有色金属加工, 2003, 32(2): 11-14, 17.CHEN Yali. Application of aluminum alloy in the aerospace industry[J]. Nonferrous Metals Fabrication, 2003, 32(2): 11-14, 17.
    [63] 陈保帆. 电磁控制作用下激光自动化焊接对铝合金焊缝孔隙率及表面粗糙度的影响[J]. 电焊机, 2015, 45(5): 160-163.CHEN Baofan. The impact of laser automated welding under electromagnetic control on weld porosity and surface roughness of aluminum alloy[J]. Electric Welding Machine, 2015, 45(5): 160-163.
    [64] 王沐. 10 mm厚6061T6铝合金磁场辅助激光扫描对接焊工艺研究[D]. 武汉:华中科技大学, 2022.WANG Mu. Research on magnetic field-assisted laser scanning butt welding process of 10 mm thick 6061T6 aluminum alloy[D]. Wuhan: Huazhong University of Science and Technology, 2022.
    [65] 国旭明, 牛鹏亮. LD10CS高强铝合金脉冲MIG焊工艺研究[J]. 电焊机, 2015, 45(6): 117-120.GUO Xuming, NIU Pengliang. Research on pulsed MIG welding process of LD10CS high-strength aluminum alloy[J]. Electric Welding Machine, 2015, 45(6): 117-120.
    [66] 卢烨, 周万盛, 雅文萃. 磁控电弧摆动对铝合金焊缝结晶裂纹的影响[J]. 焊接学报, 1991,12(2): 65-72.LU Ye, ZHOU Wansheng, WENCUI YA . Influence of magnetically controlled arc oscillation on solidification cracking of aluminum alloy welds[J]. Transactions of the China Welding Institution, 1991, 12(2): 65-72.
    [67] 冯吉才, 王亚荣, 张忠典. 镁合金焊接技术的研究现状及应用[J]. 中国有色金属学报, 2005, 15(2): 165-178.FENG Jicai, WANG Yarong, ZHANG Zhongdian. Research progress and applications of magnesium alloy welding technologies[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(2): 165-178.
    [68] 钟皓, 刘培英, 周铁涛. 镁及镁合金在航空航天中的应用及前景[J]. 航空工程与维修, 2002, 47(4): 41-42.ZHONG Hao, LIU Peiying, ZHOU Tietao. Application and prospects of magnesium and magnesium alloys in aerospace industry[J]. Aeronautical Engineering and Maintenance, 2002, 47(4): 41-42.
    [69] YUAN T, LUO Z, KOU S. Mechanism of grain refining in AZ91 Mg welds by arc oscillation[J]. Science & Technology of Welding & Joining, 2017, 22(2): 97-103.
    [70] WU H, CHANG Y, GUAN Z, et al. Arc shape and microstructural analysis of TIG welding with an alternating cusp-shaped magnetic field[J]. Journal of Materials Processing Technology, 2021, 289: 116912.
    [71] 陈树君, 夏羽, 于洋, 等. 异种金属材料磁脉冲焊接技术[C]//第三届民用飞机先进制造技术及装备论坛论文汇编. 深圳: [s.n.], 2011: 324-329.CHEN Shujun, XIA Yu, YU Yang, et al. Magnetic pulse welding technology for dissimilar metal materials [C]//Proceedings of the 3rd Forum on Advanced Manufacturing Technology and Equipment for Civil Aircrafts. Shenzhen, China: [s.n.], 2011: 324-329.
    [72] 于前, 林飞, 李铁鹏, 等. AZ91镁合金/7075铝合金异种金属扩散焊[J]. 焊接技术, 2011, 40(7): 5-8.YU Qian, LIN Fei, LI Tiepeng, et al. Diffusion welding of dissimilar metals between AZ91 magnesium alloy and 7075 aluminum alloy[J]. Welding Technology, 2011, 40(7): 5-8.
    [73] MESHRAM S D, MOHANDAS T, REDDY G M. Friction welding of dissimilar pure metals[J]. Journal of Materials Processing Technology, 2007, 184(1): 330-337.
    [74] YAN Y, ZHANG D T, QIU C, et al. Dissimilar friction stir welding between 5052 aluminum alloy and AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s619-s623.
    [75] JIN P, LIU Y B, SUN Q J, et al. Wetting mechanism and microstructure evolution of TC4/304 stainless steel joined by CMT with an assisted hybrid magnetic field[J]. Journal of Alloys and Compounds, 2020, 819: 152951.
    [76] KANG K X, LIU Y B, LI J Z, et al. Microstructure and mechanical properties of Al/steel butt joint by hybrid CMT welding with external axial magnetic field[J]. Materials, 2020, 13(16): 3601.
    [77] 闫飞, 周一凡, 唐本刊, 等. 基于磁控冶金的铝/钢异种金属焊接特性[J]. 焊接学报, 2022, 43(5): 98-103, 119-120.YAN Fei, ZHOU Yifan, TANG Benkan, et al. Welding characteristics of Al/steel dissimilar metals based on magnetically controlled metallurgy[J]. Transactions of the China Welding Institution, 2022, 43(5): 98-103, 119-120.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李富祥,王敏,林巧力,石玗.航空航天材料磁控焊接技术综述[J].南京航空航天大学学报,2025,57(1):20-33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-19
  • 最后修改日期:2025-01-10
  • 在线发布日期: 2025-03-10
文章二维码
您是第6841835位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!