基于SVR的2195铝锂合金FSW接头疲劳裂纹扩展寿命预测
作者:
作者单位:

1.南京航空航天大学航空学院,南京210016;2.金陵科技学院机电工程学院,南京211169;3.中国飞机强度研究所强度与结构完整性全国重点实验室,西安710065;4.中国飞机强度研究所结构冲击动力学航空科技全国重点实验室,西安710065

通讯作者:

童明波,男,教授,博士生导师,E-mail:tongw@nuaa.edu.cn。

中图分类号:

O346.1

基金项目:

航空科学基金项目(20230009052004)。


Prediction of Fatigue Crack Propagation Life of 2195 Aluminum-Lithium Alloy FSW Joints Based on SVR
Author:
Affiliation:

1.College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China;3.National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi’an 710065, China;4.Aviation Key Laboratory of Science and Technology on Structural Impact Dynamics, Aircraft Strength Research Institute of China, Xi’an 710065, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了对搅拌摩擦焊(Friction stir welding, FSW)焊接结构进行快速准确的裂纹扩展寿命预测,提出了一种基于支持向量回归(Support vector regression, SVR)的2195铝锂合金FSW接头疲劳裂纹扩展寿命预测方法。首先,通过疲劳裂纹扩展试验和有限元仿真得到Paris裂纹扩展模型常数及裂纹尖端应力强度因子数据集;然后基于SVR模型建立应力强度因子预测模型,并采用粒子群优化(Particle swarm optimization, PSO)算法优化SVR模型的超参数;最后,基于构建的应力强度因子预测模型和Paris模型进行裂纹扩展寿命预测。结果表明:优化后的PSO-SVR模型能够快速、准确地预测裂纹尖端应力强度因子,在测试集上的决定系数R2可以达到0.999 5,高于未优化SVR模型的0.954;该方法裂纹扩展寿命预测结果与有限元仿真结果进行对比,最大误差小于5%,验证了方法的准确性。

    Abstract:

    In order to efficiently and accurately predict the crack propagation life of friction stir welding (FSW) welded structures, a fatigue crack propagation life prediction method for 2195 aluminum-lithium alloy FSW joints based on support vector regression (SVR) is proposed. Firstly, the Paris crack propagation model constants and the crack tip stress intensity factor dataset are obtained by the fatigue crack growth test and the finite element simulation. Then a stress intensity factor prediction model is established based on the SVR model, and the hyperparameters of the SVR model are optimized by the particle swarm optimization (PSO) algorithm. Finally, the crack propagation life is predicted based on the stress intensity factor prediction model and the Paris model. The results show that the optimized PSO-SVR model can effectively predict the crack tip stress intensity factor, and the determination coefficient R2 on the test set can reach 0.999 5, which is higher than 0.954 of the unoptimized SVR model. The prediction results of crack propagation life by the proposed method are compared with those by the finite element simulation. The maximum error is less than 5%, verifying the accuracy of the method.

    参考文献
    [1] RIOJA R J, LIU J. The evolution of Al-Li base products for aerospace and space applications[J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3325-3337.
    [2] GUPTA R K, NAYAN N, NAGASIREESHA G, et al. Development and characterization of Al-Li alloys[J]. Materials Science and Engineering: A, 2006, 420(1/2): 228-234.
    [3] 王淼, 李天景, 黄婷婷, 等. 6061铝合金FSW接头组织与耐蚀性能的研究[J]. 热加工工艺, 2024(15): 31-34.WANG Miao, LI Tianjing, HUANG Tingting, et al. Study on microstructure and corrosion resistance of 6061 aluminium alloy friction stir welded joint[J]. Hot Working Technology, 2024(15): 31-34.
    [4] ZHOU C, YANG X, LUAN G. Fatigue properties of friction stir welds in Al 5083 alloy[J]. Scripta materialia, 2005, 53(10): 1187-1191.
    [5] YOKOYAMA T, NAKAI K, SUKEDAI E, et al. Tensile properties and constitutive modeling of friction stir welded AA6061-T6 butt joints[J]. Journal of Solid Mechanics and Materials Engineering, 2011, 5(12): 780-792.
    [6] YIN Y H, SUN N, NORTH T H, et al. Hook formation and mechanical properties in AZ31 friction stir spot welds[J]. Journal of Materials Processing Technology, 2010, 210(14): 2062-2070.
    [7] TRA T H, OKAZAKI M, SUZUKI K. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure[J]. International Journal of Fatigue, 2012, 43: 23-29.
    [8] DAI Q, LIANG Z, CHEN G, et al. Explore the mechanism of high fatigue crack propagation rate in fine microstructure of friction stir welded aluminum alloy[J]. Materials Science and Engineering: A, 2013, 580: 184-190.
    [9] SIVARAJ P, KANAGARAJAN D, BALASUBRAMANIAN V. Fatigue crack growth behaviour of friction stir welded AA7075-T651 aluminium alloy joints[J]. Transactions of Non-ferrous Metals Society of China, 2014, 24(8): 2459-2467.
    [10] 王磊, 李东侠, 回丽, 等.2024-T4铝合金FSW接头疲劳裂纹扩展行为及寿命预测[J].焊接学报,2023(4): 77-83,133-134.WANG Lei, LI Dongxia, HUI Li, et al. Fatigue crack propagation behavior and life prediction of 2024-T4 aluminum alloy FSW joints[J]. Transactions of the China Welding Institution, 2023(4): 77-83,133-134.
    [11] RAJA A, CHUKKA S T, JAYAGANTHAN R. Prediction of fatigue crack growth behaviour in ultrafine grained Al 2014 alloy using machine learning[J]. Metals, 2020, 10(10): 1349.
    [12] 廖贞, 杨冰, 秦亚航, 等. 基于遗传小波神经网络的疲劳短裂纹演变规律研究[J]. 铁道学报, 2018, 40 (5): 66-72.LIAO Zhen, YANG Bing, QIN Yahang, et al. Research on evolution behavior of short fatigue crack based on genetic wavelet neural network[J]. Journal of the China Railway Society, 2018, 40(5): 66-72.
    [13] 梅金娜, 王鹏, 韩姚磊, 等. 基于TPE-XGBoost算法的镍基600合金应力腐蚀裂纹扩展速率预测模型 [J]. 稀有金属材料与工程, 2021, 50(7): 2399-2408.MEI Jinna, WANG Peng, HAN Yaolei, et al. Prediction of stress corrosion crack growth rate of Ni-base alloy 600 based on TPE-XGBoost algorithm[J]. Rare Metal Materials and Engineering, 2021, 50(7): 2399-2408.
    [14] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
    [15] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization: An overview[J]. Swarm Intelligence, 2007, 1: 33-57.
    [16] 郭广平, 丁传富. 航空材料力学性能检测[M]. 北京:机械工业出版社,2017.GUO Guangping, DING Chuanfu. Mechanical properties testing of aeronautical materials[M]. Beijing: Mechanical Industry Press,2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏岩,王芳丽,陈吉昌,聂小华,常亮,童明波.基于SVR的2195铝锂合金FSW接头疲劳裂纹扩展寿命预测[J].南京航空航天大学学报,2024,56(6):1134-1142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-14
  • 最后修改日期:2024-10-11
  • 在线发布日期: 2024-12-18
文章二维码
您是第7034192位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!