基于Voronoi序列采样的加筋壁板优化设计
CSTR:
作者:
作者单位:

1.国防科技大学空天科学学院,长沙 410073;2.空天任务智能规划与仿真湖南省重点实验室,长沙 410073;3.北京宇航系统工程研究所,北京 100076

通讯作者:

张大鹏,男,博士,副教授,E-mail:zhangdapenghit@126.com。

中图分类号:

V214.4;O344.7

基金项目:

国家重点研究发展计划(2017YFB0306200);国家自然科学基金(11902348);湖南省自然科学基金(2020JJ5650);国防科技大学科研计划(ZK20-27)。


Optimum Design of Stiffened Panels Based on Voronoi Sequence Sampling Method
Author:
Affiliation:

1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073, China;2.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha 410073, China;3.Beijing Institute of Aerospace Systems Engineering,Beijing 100076, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为提高加筋壁板结构轻质优化效率,提出一种基于Voronoi序列采样的加筋壁板优化设计方法。建立了该结构的参数化模型,分析了加筋壁板蒙皮与桁条腹板的网格规模对结构承载能力及失稳模式的影响规律,并依据桁条腹板高厚比进行了网格划分,进而平衡后屈曲分析精度与效率;然后,提出了基于探索策略和开发策略的序列近似优化方法,其中Voronoi加点侧重全空间探索,近似最优解侧重局部开发,通过动态加点迭代至收敛,实现综合探索和开发性能的并行采样,提高了算法的收敛精度和计算效率;最后,应用该算法进行加筋壁板轻量化设计,并与传统序列近似优化方法进行对比。结果表明,本文方法利用更少的初始样本点,通过更少的迭代次数达到更高的优化精度,并获得了相对初始设计减重32.6%的优化结构。

    Abstract:

    To improve the efficiency of lightweight optimization for stiffened panels, an efficient dynamic sequential lightweight optimization method based on Voronoi is proposed. Above all, the influences of the mesh size of the stiffened panel skin and strings on load-carrying capacity and the buckling modes of the structure are analyzed based on the parametric model. Furthermore, the dynamic mesh partition is realized according to the height-thickness of the web to balance the accuracy and efficiency of post-buckling analysis.Then, a dynamic sequential approximate optimization incorporating an exploration strategy and an exploitation strategy is proposed. Sampling by Voronoi focuses on global space exploration, while sampling by approximate optimal solution focuses on local exploitation. The parallel sampling with both explorative and exploitative performance is realized by dynamic sampling iteration to convergence, which improved the convergence precision and computational efficiency of the algorithm.Ultimately, the proposed algorithm is applied to the lightweight design of stiffened panels, and compared with the traditional sequential approximation optimization method. The results reveal that the proposed method needs fewer initial sample points and less iteration times to achieve higher optimization accuracy, and obtains an optimized structure with a weight reduction of 32.6% compared with the initial design,which indicates that the proposed method is validated for the prospect of engineering applications.

    参考文献
    [1] 李乐坤,李曙林,常飞.复合材料加筋壁板压缩屈曲与后屈曲分析[J]. 南京航空航天大学学报,2016,48(4):563-568.Li Lekun,Li Shulin,Chang Fei. Buckling and post-buckling of cormposite stiffened panel under compression[J].Journal of Nanjing University of Aeronautics & Astronautics,2016,48(4):563-568.
    [2] 郝鹏,王博,李刚. 基于代理模型和等效刚度模型的加筋柱壳混合优化设计[J]. 计算力学学报,2012,29(4):481-486.Hao Peng,Wang Bo,Li Gang.Hybrid optimiz-ation of grid-stiffened cylinder based on surrogate model and smeared stiffener model[J].Chinese Journal of Computational Mechanics, 2012, 29(4):481-486.
    [3] Hao P,Wang B, Li G. Surrogate-based optimum design for stiffened shells with adaptive sampling[J]. AIAA Journal,2012,50(11):2389-2407.
    [4] Vasiliev V V,Barynin V A,Razin A F. Anisogrid composite lattice structures-development and aerospace applications[J]. Composite Structures,2011, 94(3):1117-1127.
    [5] 王博,郝鹏,田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报,2019,36(1):1-12.Wang Bo,Hao Peng,Tian Kuo.Recent advan-ces in structural analysis and optimization of stiffened shells[J].Chinese Journal of Computational mechanics ,2019,36(1):1-12.
    [6] Wang Xinwei, Yuan Zhangxian. An efficient method for local buckling analysis of stiffened panels[J]. Transactions of Nanjing University of Aeronautics & Astronautics,2019,36(1):20-28.
    [7] 罗志凡,荣见华,杜海珍. 基于遗传算法和梯度算法的一种结构优化混合方法[J]. 计算机工程与应用,2003,3(8):71-73.Luo Zhifan,Rong Jianhua,Du Haizhen.A combination algorithm for structural optimization based on genetic algorithm and gradient algorithm[J].Computer Engineering and Aapplications,2003,3(8):71-73.
    [8] 史人赫,刘莉,龙腾,等. 基于支持向量拟合代理模型的卫星多学科设计优化[J].南京航空航天大学学报,2014,46(3):481-486.Shi Renhe,Liu Li,Long Teng,et al.Satellite multidisciplinary design opttimization based on support vector regression surrogate model[J].Journal of Nanjing University of Aeronautics & Astronautics,2014,46(3):481-486.
    [9] WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design,2007,129(4):370-380.
    [10] 穆雪峰,姚卫星,余雄庆. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报,2005,22(5):608-612.Mu Xuefeng,Yao Weixing,Yu Xiongqing.A survey of surrogate models used in MDO[J].Chinese Journal of Computational Mechanics,2005,22(5):608-612.
    [11] JIN R,CHEN W,SIMPSON T W. Comparative studies of metamodeling techniques under multiple modeling critieria[J]. Struct Multidisc Optim,2001,23(1):1-13.
    [12] Gutmann H M. A radial basis function method for global optimization[J]. Journal of Global Optimization,2001,19(3):201-227.
    [13] Mullur A A,Messac A. Extended radial basis functions: More flexible and effective meta modeling [J]. AIAA Journal,2005,43(6):1306-1315.
    [14] Wang B,Hao P,Li G, et al. Determination of realistic worst imperfection for cylindrical shells using surrogate model[J]. Structural and Multidisciplinary Optimization,2013,48:777-794.
    [15] Wang B,Hao P,Li G,et al. Optimum design of hierarchical stiffened shells for low imperfection sensitivity[J]. Acta Mechanica Sinica,2014,30(3):391-402.
    [16] Wang B, Tian K,Hao P, et al. Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method[J]. Composite Structures,2015,132:136-147.
    [17] Wang B,Ma X,Hao P,et al. Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections[J]. Composites Part B—Engineering,2019,163:314-323.
    [18] Hao P,Wang B,Li G,et al. Surrogate-based optimization of stiffened shells including load-carrying capacity and imperfection sensitivity[J]. Thin-Walled Structures,2013,72:164-174.
    [19] Hao P,Wang B,Li G,et al. Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method[J]. Thin-Walled Structures,2014,82:46-54.
    [20] Hao P,Wang B,Li G,et al. Hybrid framework for reliability-based design optimization of imperfect stiffened shells[J]. AIAA Journal,2015,53(10):2878-2889.
    [21] 郝鹏,王博,邹威任. 基于RBF模型的蒙皮桁条结构减轻孔优化[J]. 固体火箭技术,2015,38(5):717-721.Hao Peng,Wang Bo,Zou Weiren.Optimum design of lightening holes for skin-stringer structures based on RBF model[J].Journal of Solid Rocket Technology,2015,38(5):717-721.
    [22] Hao P,Wang B,Tian K,et al. Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners[J]. AIAA Journal,2016,54(4):1350-1363.
    [23] 彭磊,刘莉,龙腾. 基于动态径向基函数代理模型的优化策略[J]. 机械工程学报,2011, 47(7):164-170.Peng Lei,Liu Li,Long Teng.Optimization strategy using dynamic radial basis function metamodel[J].Journal of Mechanical Engineering,2011, 47(7):164-170.
    [24] 龙腾,郭晓松,彭磊. 基于信赖域的动态径向基函数代理模型优化策略[J]. 机械工程学报,2014,50(7):184-190.Long Teng,Guo Xiangsong,Peng Lei.Optimi-zation strategy using dynamic radial basis function metamodel based on trust region[J].Journal of Mechanical Engineering,2014,50(7):184-190.
    [25] 王志祥,欧阳兴,王斌. 基于序列径向基函数的运载火箭蒙皮桁条结构轻质优化[J]. 国防科技大学学报,2021,43(1):57-65.Wang Zhixiang,Ouyang Xing,Wang Bin.Lig-htweight optimization of skinned purlin structure in launch vehicle based on sequential radial basis function [J].Journal of National University of Defense Technology,2021,43(1):57-65.
    [26] 朱利,符小卫. 基于Voronoi图质心的多无人机协同区域搜索算法[J]. 无人系统技术,2019,2(2):39-51.Zhu Li,Fu Xiaowei.Multiple UAVs cooperative area search algorithm based on centroid of Voronoi diagram[J].Unmanned Systems Technology,2019,2(2):39-51.
    [27] 袁国栋,李宗刚,杜亚江. 基于Voronoi和虚拟力的多机器人持续监控研究[J]. 控制工程,2021, 28(9):1842-1849.Yuan Guodong,Li Zonggang,Du Yajiang.Research on persistent monitoring of multi-robot systems based on Voronoi and virtual force[J].Control Engineering of China,2021, 28(9):1842-1849.
    [28] Jiang C,Cai X,Qiu H,et al. A two-stage support vector regression assisted sequential sampling approach for global metamodeling[J]. Structural and Multidisciplinary Optimization,2018,58(4):1657-1672.
    [29] Xu S L,Liu H T,Wang X F,et al. A robust error-pursuing sequential sampling approach for global metamodeling based on Voronoi diagram and cross validation[J]. Journal of Mechanical Design,2014,136(7):071009.
    [30] Wang Z X, Lei Y J, Wu Z P, et al. Lightweight design of cylindrical stiffened shells in launch vehicles by a dual-elite population sequential approximation optimization approach[J]. Engineering Optimization,2020,53(6):984-1004.
    [31] 龙连春,赵斌,陈兴华.薄壁加筋圆柱壳稳定性分析及优化[J]. 北京工业大学学报,2012,38(7):997-1003.Long Lianchun,Zhao Bin,Chen Xinghua.Buckling analysis and optimization of thin-walled stiffened cylindrical shell[J].Journal of Beijing University of Technology,2012,38(7):997-1003.
    [32] 武泽平. 序列近似优化方法及其应用研究 [D]. 长沙:国防科学技术大学,2013.Wu Zeping.Study on sequential approximate optimization and its application[D].Changsha:National University of Defense Technology,2013.
    [33] MISHRA P K,NATH S K,KOSEC G, et al. An improved radial basis-pseudospectral method with hybrid Gaussian-cubic kernels[J]. Engineering Analysis with Boundary Elements,2017,80:162-171.
    [34] Wu Z P,Wang D H, OKOLO N P,et al. Unified estimate of Gaussian kernel width for surrogate models [J]. Neurocomputing,2016,203:41-51.
    [35] 王志祥,武泽平,王婕. 大型运载火箭加筋柱壳近似建模方法 [J]. 宇航学报,2020,41(10):1267-1279.Wang Zhixiang,Wu Zeping,Wang Jie.Appro-ximation modeling method for cylindrical stiffened shells in large launch vehicles[J].Journal of Astronautics,2020,41(10):1267-1279.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

于宝石,王志祥,王婕,李海阳,张大鹏.基于Voronoi序列采样的加筋壁板优化设计[J].南京航空航天大学学报,2022,54(1):121-131

复制
分享
文章指标
  • 点击次数:765
  • 下载次数: 2747
  • HTML阅读次数: 1315
  • 引用次数: 0
历史
  • 收稿日期:2020-11-06
  • 最后修改日期:2021-01-15
  • 在线发布日期: 2022-02-05
文章二维码
您是第6919653位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!