中文核心期刊
中国科技论文统计源期刊
国际刊号:1005-2615
国内刊号:32-1429/V
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式ʽ
  • 主管:工业和信息化部
  • 主办:南京航空航天大学
  • 国际刊号:1005-2615
  • 国内刊号:32-1429/V
  • 地址:南京市御道街29号
  • 电话:025-84892726
  • 传真:025-84892726
  • E-mail:tnc01@nuaa.edu.cn
  • 邮编:210016
丁建立,孙玥.基于LightGBM的航班延误多分类预测[J].南京航空航天大学学报,2021,53(6):847-854
基于LightGBM的航班延误多分类预测
Multi-classification Prediction of Flight Delay Based on LightGBM
投稿时间:2021-05-10  修订日期:2021-10-19
DOI:10.16356/j.1005-2615.2021.06.003
中文关键词:  航班延误  预测模型  轻量级梯度提升机  贝叶斯调参
英文关键词:flight delay  prediction model  light gradient boosting machine (LightGBM)  Bayesian optimization
基金项目:国家自然科学基金民航联合基金重点(U2033205)资助项目。
作者单位邮编
丁建立 中国民航大学计算机科学与技术学院天津 300300 300300
孙玥 中国民航大学计算机科学与技术学院天津 300300 300300
摘要点击次数: 89
全文下载次数: 140
中文摘要:
      航班延误是民航业的一大难题,提前对航班的延误情况进行预测,以采取合理的应对措施,对缓解航班延误产生的负面影响有着重要意义。为提升预测性能,提出一种基于轻量级梯度提升机(Light gradient boosting machine,LightGBM)的航班延误多分类预测模型。该模型结合航班信息与天气信息,运用方差过滤与递归特征消除进行特征筛选,并采用合成少数过采样技术(Synthetic minority oversampling technique,SMOTE)与Tomek Link对数据进行不平衡处理,最后使用LightGBM进行建模,实现对航班延误时长的多分类预测。为验证模型的合理性,将所提模型与其他先进算法构建的模型进行对比。实验结果表明,所提模型在各种预测性能指标上结果更优,将预测精度提升至90%以上,同时大幅度降低了训练时间成本。
英文摘要:
      Delay of flights is a core problem in civil aviation industry. It is significant to predict flight delay situation in advance so as to take reasonable measures to negative effects of flight delay. In order to improve the prediction performance, a flight delay multi-classification prediction model based on light gradient boosting machine (LightGBM) is put forward in this paper. This model can screen features by using variance filtering and recursive feature elimination according to flight information and weather information. It uses synthetic minority oversampling technique (SMOTE) and Tomek Link to deal with unbalanced data. Finally, LightGBM is used to build models, and multi-classification prediction of flight delay lengths can be realized. In order to verify the rationality of the model, this paper compares the proposed model with models constructed by other advanced algorithms. The experimental results show that the proposed model performs better in terms of various prediction performance indexes and can improve the prediction accuracy to 90% or higher. The model can also greatly reduce the training time and cost.
[HTML]  查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《南京航空航天大学学报》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892726      传真:025-84892726       E-mail:tnc01@nuaa.edu.cn

您是本站第4029413位访问者 本站今日一共被访问969

技术支持:北京勤云科技发展有限公司

敬请关注《南航学报》官方微信