一种适用于飞机壁板自动化制孔的法向修正技术
CSTR:
作者:
作者单位:

1.中航工业西安飞机工业集团股份有限公司,西安 710089;2.浙江大学机械工程学院,杭州 310027

通讯作者:

罗群,男,高级工程师,E-mail: lko821215@sina.com。

中图分类号:

V262.4

基金项目:

国家自然科学基金(51975520)资助项目;国家重点研发计划专项(2019YFB1707501)资助项目。


A Normal Correction Technology Suitable for Automatic Drilling of Aircraft Panels
Author:
Affiliation:

1.AVIC Xi’an Aircraft Industry Group Company Ltd., Xi’an 710089, China;2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在飞机装配中制孔的位置和法向精度将直接影响飞机最终的装配质量。自动化制孔以飞机数模为基准,但在实际装配过程中,由于受多源耦合装配误差影响,壁板等大型柔性结构件的实际外形不可避免地会与理论数模出现偏差,因此需要对制孔位置和法向进行修正。为了减少制孔法向偏差和提高制孔效率,本文结合大型飞机机翼壁板的结构特点,提出一种基于基准孔插值的法向偏差修正技术。通过激光位移传感器的测量值计算得到各基准孔的实际法矢方向,结合视觉测量系统得到基准孔孔位偏差,利用插值算法实现其余孔位的法向修正。试验结果表明,该修正技术可实现法向误差不超过0.3°,制孔效率相比逐孔修正可提升约25%。

    Abstract:

    The position and normal accuracy of the automatic drilling in aircraft assembly will directly affect the quality of the final product. The process of automatic drilling is designed based on the aircraft’s digital model. However, in the assembly shop-floor, under the influence of superimposed multi-source assembly deviation, the physical shapes of large flexible structural parts like wing panels will inevitably deviate from the theoretical model. Therefore, the position and normal directions of connecting holes need to be corrected. In order to reduce the normal deviation and improve the drilling efficiency, we propose a normal correction technology based on interpolation of reference holes considering the structural characteristics of panel skins of large aircraft. The actual normal direction of each reference hole is calculated by the measurement values of laser displacement sensors, and the position deviations of the reference holes are obtained in conjunction with the visual measurement system. Based on the information of reference holes, the normal correction of the remaining holes is realized by using an interpolation algorithm. The test results show that the proposed correction technology can achieve normal accuracy within 0.3°, and the drilling efficiency can be improved by about 25% compared with the traditional correction technology.

    表 1 直径6 mm孔法向精度检测数据Table 1 Normal detection data for holes of 6 mm diameter
    表 2 直径8 mm孔法向精度检测数据Table 2 Normal detection data for holes of 8 mm diameter
    图1 飞机壁板自动化制孔系统Fig.1 Automatic drilling system of aircraft panels
    图2 制孔末端执行器Fig.2 End effector with multifunction integrated
    图3 总体加工工艺过程Fig.3 Overall manufacturing process
    图4 单孔加工流程图Fig.4 Drilling process of a single hole
    图5 法向修正问题描述Fig.5 Description of normal correction problem
    图6 视觉测量界面Fig.6 Visual measurement interface
    图7 法向修正原理图Fig.7 Schematic diagram of normal correction
    图8 试验设备和局部加工孔Fig.8 Experimental setup and local drilling holes
    图9 直径6 mm孔法向偏差对比Fig.9 Normal deviation comparison for holes of 6 mm diameter
    图10 直径8 mm孔法向偏差对比Fig.10 Normal deviation comparison for holes of 8 mm diameter
    图1 D2Q9 modelFig.1
    图2 Annular channel as in journal bearingFig.2
    图3 Method for curved boundaryFig.3
    图4 Verification of model by comparing with Diprima’s resultFig.4
    图5 Non-dimensional circumferential pressure under different eccentricitiesFig.5
    图6 Value and position of extremum pressureFig.6
    图7 Diagram of positions A, B, C and the corresponding streamlineFig.7
    图8 Positions of separate point and reattachment point against eccentricityFig.8
    图9 Non-dimensionalized tangential velocity along minimum thicknessFig.9
    图10 Non-dimensionalized tangential velocity along maximum thicknessFig.10
    图11 Non-dimensionalized pressure distribution under different rotating speedsFig.11
    图12 Value and position of extremum pressureFig.12
    图13 Non-dimensionalized tangential velocity along minimum thicknessFig.13
    图14 Non-dimensionalized tangential velocity along maximum thicknessFig.14
    图15 Positions of separation point and reattachment point against eccentricityFig.15
    图16 Non-dimensionalized pressure distribution under different clearance ratiosFig.16
    图17 Value and position of extremum pressureFig.17
    图18 Non-dimensionalized tangential velocity along the minimum thicknessFig.18
    图19 Non-dimensionalized tangential velocity along maximum thicknessFig.19
    图20 Positions of separation point and reattachment point against clearance ratioFig.20
    参考文献
    相似文献
    引证文献
引用本文

罗群,李欢庆,张一帆,薛宏,刘鹏.一种适用于飞机壁板自动化制孔的法向修正技术[J].南京航空航天大学学报,2021,53(3):373-380

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-13
  • 最后修改日期:2021-01-12
  • 在线发布日期: 2021-06-05
文章二维码
您是第位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!