直升机旋翼干扰对尾桨气动噪声影响的数值研究
CSTR:
作者:
作者单位:

中国直升机设计研究所直升机旋翼动力学重点实验室,景德镇 333001

通讯作者:

邱逢昌,男,工程师,E-mail: qiufc@avic.com。

中图分类号:

V211.3


Numerical Research on Aeroacoustic Characteristics of Helicopter Tail-Rotor Under Rotor Interaction
Author:
Affiliation:

Science and Technology on Rotorcraft Aeromechanics Laboratory, China Helicopter Research and Development Institute, Jingdezhen 333001, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用基于运动嵌套网格的CFD方法来模拟直升机旋翼/尾桨气动干扰流场,为旋翼/尾桨干扰噪声的计算提供准确的非定常气动力,并采用FW-H方程来计算干扰状态下的尾桨气动噪声。采用建立的计算模型,针对不同飞行状态下的尾桨噪声特性进行数值模拟,分析了旋翼尾流对尾桨气动噪声的干扰特性,并着重研究了尾桨重要的设计参数——旋转方向和垂向位置对尾桨噪声的影响规律。计算结果表明:悬停时,旋翼对尾桨的气动干扰影响会导致尾桨的噪声水平有所增加,但不会发生显著的变化;前飞时,旋翼干扰对尾桨噪声影响较大,且旋转方向和垂向位置对干扰噪声特性具有重要影响。

    Abstract:

    Firstly, a calculation model is established for aeroacoustic analysis of main-rotor/tail-rotor interaction. In the established calculation model, a CFD model based on the motional embedded grid system is adopted to simulate the aerodynamic interaction flow-field of helicopter main-rotor/tail-rotor configuration, and FW-H equations are used to calculate the interaction noise of tail-rotor. Secondly, based on the developed calculation model, the tail-rotor noise characteristics under the main-rotor interaction in different flight conditions are calculated in detail, and the influence of the rotor wake on the tail-rotor noise is analyzed. In addition, the influence of design parameters of tail-rotor (i.e. rotation direction and vertical position relative to the rotor plane) on the tail-rotor noise is studied seriously. The calculation results indicate that in hover, the noise level of tail rotor increase slightly due to the interaction of main rotor wake, but no significant changes of noise occur. At forward flight, the noise level of tail rotor is influenced by the main rotor wake obviously, and rotation direction and vertical position of the tail-rotor have important influence on the acoustic characteristics of tail rotor.

    表 1 旋翼和尾桨参数表Table 1 Parameters of rotor and tail-rotor
    图1 Helishape 7A旋翼桨叶剖面法向力系数试验值与计算值对比Fig.1 Comparison between experimental and calculated values of sectional normal force coefficient of Helishape 7A rotor
    图3 UH-1H旋翼噪声声压历程计算对比Fig.3 Comparison of noise pressure of UH-1H rotor
    图4 典型桨涡干扰状态AH-1/OLS旋翼声压历程计算值与试验值对比Fig.4 Comparison of calculated and experimental results of noise pressure of AH-1/OLS rotor during blade-vortex interaction
    图5 旋翼/尾桨相对位置示意图Fig.5 Schematic of relative positions of main-rotor and tail-rotor
    图6 旋翼/尾桨干扰计算网格系统示意图Fig.6 Grid system for main-rotor and tail-rotor interference calculation
    图7 悬停状态旋翼/尾桨干扰流场等涡量图Fig.7 Vorticity contours of rotor/tail rotor interaction in hovering state
    图8 悬停状态时尾桨拉力系数随方位角的变化曲线Fig.8 Variation of tail rotor thrust coefficient with azimuth in hovering
    图9 悬停状态时孤立尾桨厚度噪声SPL分布图Fig.9 Distribution of tail-rotor thickness noise SPL in hovering
    图11 悬停状态时尾桨总噪声分布图Fig.11 Total noise SPL of tail-rotor in hovering
    图12 前飞状态旋翼/尾桨干扰流场涡量图Fig.12 Vorticity contours of rotor/tail rotor interaction in forward flight
    图13 低速前飞状态时尾桨拉力系数随方位角的变化曲线Fig.13 Variation of tail rotor thrust coefficient with azimuth in low-speed flight
    图14 低速前飞时尾桨厚度噪声分布图Fig.14 Thickness noise SPL of tail-rotor in low-speed flight
    图16 低速前飞时尾桨总噪声分布图Fig.16 Total noise SPL of tail-rotor in low-speed flight
    图17 中速前飞时尾桨厚度噪声分布图Fig.17 Thickness noise SPL of tail-rotor in cruise-speed flight
    图18 中速前飞时尾桨载荷噪声分布图Fig.18 Load noise SPL of tail-rotor in cruise-speed flight
    图19 中速前飞时尾桨总噪声分布图Fig.19 Total noise SPL of tail-rotor in cruise-speed flight
    参考文献
    [1] STEIJL R, BARAKOS G N. Computational study of helicopter rotor-fuselage aerodynamic interactions[J]. AIAA Journal, 2009, 47(9):2143-2157.
    [2] LEVERTON J W, POLLARD J S, WILLS C R. Main rotor wake/tail rotor interaction[J]. Vertica, 1977, 1(3):213-221.
    [3] MARTIN R M, BURLEY C L, ELLIOTT J W. Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration: NASA-TM-101550[R].
    [4] MENGER R P, WOOD T L, BEIEGER J T. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise: NASA CR-166477[R].
    [5] YIN J P. Simulation of tail rotor noise reduction and comparison with helinovi wind tunnel test data[C]//Proceedings of American Helicopter Society 67th Annual Forum Proceedings. Virginia Beach, VA:AHS, 2011.
    [6] FLETCHER T M, BROWN R E. Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight[J]. Journal of Aircraft, 2010, 47(6):2136-2148.
    [7] FLETCHER T M, DURAISAMY K, BROWN R E. Aeroacoustic analysis of main rotor-tail rotor interaction[C]//Proceedings of The 34th European Rotorcraft Forum. Liverpool, UK:[s.
    [8] YANG C, AOYAMA T, SAITO S, et al. Numerical analysis for main-rotor/tail-rotor interaction of helicopter: JAXA-RR-08-006E[C]//Proceedings of Congress of International Council of the Aeronautical Sciences (ICAS 2004). Yokohama, Japan:[s.
    [9] YIN J P. Simulation of tail rotor noise reduction and comparison with wind tunnel test data[C]//Proceedings of American Helicopter Society 67th Annual Forum. Virginia Beach, VA: AHS, 2011.
    [10] YIN J P, WALL B VAN DER , OERLEMANS S, et al. Representative test results from HeliNovi aeroacoustic main rotor/tail rotor/fuselage test in DNW[C]//Proceedings of The 31st European Rotorcraft Forum.[S.l.]:[s.
    [11] MEHMET M A, MURAT S, ARDA Y, Yusuf O. Main rotor-Tail Rotor Interaction Noise[C]//Proceedings of The 8th Asian/Australian Rotorcraft Forum. Aukara Tuekey:[s.
    [12] ARDA Y, YUSUF O. Viscous vortex particle method explored for main rotor-tail rotor interaction[C]//Proceedings of The 8th Asian/Australian Rotorcraft Forum. Aukara Tuekey:[s.
    [13] 樊枫, 徐国华, 史勇杰. 基于CFD方法的直升机旋翼/尾桨非定常气动干扰计算[J]. 航空动力学报, 2014, 29(1):2633-2642.
    [14] 赵国庆,招启军,吴琪.旋翼非定常气动特性CFD模拟的通用运动嵌套网格方法[J].航空动力学报,2015,30(3):546-554.
    [15] SCHULTZ K J, SPLETTSTOESSER W, JUNKER B, et al. A parametric wind tunnel test on rotorcraft aerodynamics and aeroacoustics (HELISHAPE)—Test documentation and representative results[C]//Proceedings of The 22nd European Rotorcraft Forum. Brighton, UK:[s.
    [16] LEE B S, JUNG M S, KWON O J, et al. Numerical simulation of rotor-fuselage aerodynamic interaction using an unstructured overset mesh Technique[J]. International Journal of Aeronautical and Space Sciences, 2010, 11(1):1-9.
    [17] BRENTNER K S. Prediction of helicopter discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation:NASA TM-87221 [R].
    [18] BOXWELL D A, YU Y H, SCHNITZ F H. Hovering impulsive noise: Some measured and calculated results: NASA CP-2052 [R].
    [19] MENGER R P, WOOD T L, BEIEGER J T. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise:NASA CR-166477 [R].
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

樊枫,邱逢昌,曹亚雄.直升机旋翼干扰对尾桨气动噪声影响的数值研究[J].南京航空航天大学学报,2021,53(2):243-252

复制
分享
文章指标
  • 点击次数:1072
  • 下载次数: 2395
  • HTML阅读次数: 1404
  • 引用次数: 0
历史
  • 收稿日期:2020-10-17
  • 最后修改日期:2021-01-27
  • 在线发布日期: 2021-04-05
文章二维码
您是第6964818位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!