低温微磨料气射流加工微流道专用机床
CSTR:
作者:
作者单位:

1.南京航空航天大学直升机传动技术重点实验室,南京 210016;2.大连理工大学精密与特种加工教育部重点实验室,大连 116024

通讯作者:

孙玉利,男,教授,博士生导师,E-mail: sunyuli@nuaa.edu.cn。

中图分类号:

TH16

基金项目:

国家自然科学基金面上(52075254)资助项目;大连理工大学精密与特种加工教育部重点实验室研究基金(JMTZ201901)资助项目;江苏省研究生科研与实践创新计划(KYCX20_0183)资助项目;南京航空航天大学2019年研究生创新基地(实验室)开放基金(kfjj20190503)资助项目。


Micro-channel Special Machine Tool for Cryogenic Micro-abrasive Air Jet Machining
Author:
Affiliation:

1.Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;2.Key Laboratory for Precision and Non-traditional Machining Technology, Ministry of Education, Dalian University of Technology, Dalian 116024, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对目前低温微磨料气射流加工用简易实验装置中存在的问题,研制了低温微磨料气射流加工微流道专用机床。该机床主要由微磨料气射流发生部分、冷却部分、加工部分、磨料回收部分及其控制系统部分组成。首先对机床进行整体设计,保证其具有合理的布局和稳定的结构;其次针对机床的核心部件冷却器进行总体设计、理论计算与仿真分析,并开展测温实验验证设计的合理性,使用PLC控制器和液氮液位监测仪实现冷却器的自动控温;最后设计了四维移动平台,并通过人机交互界面对其进行编程控制。验证实验表明,该机床在低温下可实现对聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)材料的有效冲蚀去除,且加工效果明显好于常温下的加工效果,能够满足微流控芯片的多元化应用需求。

    Abstract:

    Aiming at the problems existing in the current simple cryogenic micro-abrasive air jet machining experimental equipment, we develop a micro-channel special machine tool for cryogenic micro-abrasive air jet machining. The machine tool is mainly composed of a micro-abrasive air jet generating part, a cooling part, a machining part, an abrasive recovery part and a control system part. Firstly, the overall design of the machine tool is performed to ensure it has reasonable layout and stable structure. Secondly, the overall design, theoretical calculation and simulation analysis of the core component cooler of the machine tool are carried out, and the rationality of the design is verified by temperature measurement experiment. The PLC controller and liquid nitrogen level monitor are used to realize the automatic temperature control of the cooler. Finally, the four-dimensional mobile platform is designed and controlled through the human-machine interaction interface. The verification experiment shows that the machine tool can achieve effective erosion removal of polydimethylsiloxane (PDMS) at low temperature, and the processing effect is significantly better than that at room temperature, which can meet the diversified application requirements of microfluidic chips.

    表 1 四维移动平台的主要技术指标Table 1 Main technical indicators of four-dimensional mobile platform
    图1 低温微磨料气射流加工微流道专用机床整体布局Fig.1 Overall layout of micro-channel special machine tool for cryogenic micro-abrasive air jet machining
    图2 冷却器Fig.2 Cooler
    图3 3种长度的蛇形弯管Fig.3 Three lengths of serpentine tubes
    图4 冷却器内筒简化模型Fig.4 Simplified model of inner cylinder of cooler
    图5 模型网格划分Fig.5 Model meshing
    图8 3种情况的射流出口温度沿直径方向(x方向)的温度分布曲线Fig.8 Temperature distribution curves of the jet outlet temperature along the diameter direction (x direction) in three cases
    图9 3种情况的射流出口温度随时间的变化曲线Fig.9 Curves of jet outlet temperature with time in three cases
    图10 3种情况的射流出口温度最终波动状态Fig.10 Final fluctuation state of jet outlet temperature in three cases
    图11 冷却器自动控温系统Fig.11 Automatic temperature control system of cooler
    图12 机床控制系统Fig.12 Machine tool control system
    图13 “二”字形微流道Fig.13 “二” shaped micro-channel
    图14 A、B位置的微流道横截面轮廓Fig.14 Cross-sectional profiles of micro-channels at positions A and B
    图15 A1、B1位置的微流道横截面轮廓Fig.15 Cross-sectional profiles of micro-channels at positions A1 and B1
    表 2 实验工艺参数验证Table 2 Verification of experiment process parameters
    参考文献
    [1] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
    [2] NGE P N, ROGERS C I, WOOLLEY A T. Advances in microfluidic materials, functions, integration, and applications[J]. Chemical Reviews, 2013, 113(4): 2550-2583.
    [3] 姜迪, 项楠, 唐文来, 等. 微操控技术发展与应用[J]. 机械设计与制造工程, 2017, 46(3): 9-22.
    [4] 林晓梅, 张铭. PDMS微流控芯片加工技术研究[J]. 长春工业大学学报(自然科学版), 2013, 34(2): 172-179.
    [5] MILLS C A, MARTINEZ E, BESSUEILLE F, et al. Production of structures for microfluidics using polymer imprint techniques[J]. Microelectronic Engineering, 2005, 78(2): 695-700.
    [6] 夏飞. PDMS微流控芯片的制备工艺研究[D]. 南京: 南京理工大学, 2010.
    [7] 付川. 激光加工表面微观形貌与疏水特性研究[D]. 大连: 大连理工大学, 2017.
    [8] MELENTIEV R, FANG F Z. Recent advances and challenges of abrasive jet machining[J]. Journal of Manufacturing Science and Technology, 2018, 22: 1-20.
    [9] 李全来, 李长林, 陶春生. 微磨料气射流成形加工表面波纹度研究[J]. 现代制造工程, 2017(6): 114-120.
    [10] 樊晶明, 王成勇, 王军, 等. 微磨料空气射流加工特性研究[J]. 中国机械工程, 2008, 19(5): 584-589.
    [11] 罗国胜. 微磨料气射流加工工艺研究[D]. 南宁: 广西大学, 2006.
    [12] GHAZAVI A, PAPINI M. An inverse method for the abrasive jet micro-machining of high aspect ration channels of desired topography-Part Ⅰ, Theory[J]. Precision Engineering, 2019, 58: 57-69.
    [13] 娄元帅, 孙玉利, 王亚霁, 等. 低温磨料气射流加工PDMS实验研究[J]. 南京航空航天大学学报, 2019, 51(3): 305-311.
    [14] KAKINUMA Y, YASUDA N, AOYAMA T. Micromachining of soft polymer material applying cryogenic cooling[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(4): 560-569.
    [15] GETU H, SPELT J K, PAPINI M. Thermal analysis of cryogenically assisted abrasive jet micromachining of PDMS[J]. International Journal of Machine Tools and Manufacture, 2011, 51(9): 721-730.
    [16] GETU H, SPELT J K, PAPINI M. Cryogenically assisted abrasive jet micromachining of polymers[J]. Journal of Micromechanics and Microengineering, 2008, 18(11): 1-8.
    [17] 张靖周. 高等传热学[M]. 北京: 科学出版社, 2009.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钱炳坤,孙玉利,张桂冠,刘旭,高航,左敦稳.低温微磨料气射流加工微流道专用机床[J].南京航空航天大学学报,2021,53(1):93-100

复制
分享
文章指标
  • 点击次数:1166
  • 下载次数: 2291
  • HTML阅读次数: 960
  • 引用次数: 0
历史
  • 收稿日期:2020-07-17
  • 最后修改日期:2020-10-14
  • 在线发布日期: 2021-02-05
文章二维码
您是第6916409位访问者
网站版权 © 南京航空航天大学学报
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!