DOI:10.16356/j.1005-2615.2021.S.002

第 53 卷增刊

2021年10月

南

京

星舰动力特点及再入过程推进剂流动仿真研究

罗 몖 陈士强 李大鹏 辉 潘

(北京宇航系统工程研究所,北京100076)

摘要:为给新一代可重复使用运载器的研发提供参考,梳理了星舰动力系统的技术特点,并采用限体积法 (Volume of fraction, VOF)对再入过程中液氧贮箱三维非定常流动进行了仿真,分析了复杂加速度场下推进 剂贮箱内液氧流动特性。仿真结果表明,在星舰再入着陆阶段,贮箱内推进剂发生了低频率(<0.6 Hz)、高幅 度(轴向质心偏移高达20%)的晃动;并且贮箱底部推进剂产生了大量夹气现象,这可能会给发动机带来灾难 性后果。

关键词:星舰;三维仿真;液氧晃动;飞行再入 中图分类号:V475.1 文献标志码:A 文章编号:1005-2615(2021)S-0009-08

Characteristics of Starship Propulsion System and Numerical Simulation of Propellant Flow During Reentry

LUO Meng, CHEN Shiqiang, LI Dapeng, PAN Hui (Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China)

Abstract: To provide reference for the development of new generation reusable launch vehicles, the detailed characteristics of SpaceX Starship are summarized. The typical volume of fraction (VOF) method is employed to perform a numerical simulation of 3-D unsteady flow in liquid oxygen tank during the Starship's reentry stage. The liquid oxygen (LOx) sloshing characteristics under complex accelerations are analyzed. The simulation results show that a low-frequent (<0.6 Hz) and a high-amplitude (i.e. axial center of mass displacement up to 20%) sloshing occurs during the Starship's landing stage. A large amount of air entrainment appears at the bottom of the propellant tank, which may bring disasters to the rocket engine. Key words: spaceX Starship; 3-D numerical simulation; liquid oxygen sloshing; flight reentry

目前各航天大国对地-月、地-火以及其他深空 探索任务的需求日益增加,伴随着空间技术产业 化、商业化的发展,研究"绿色"、低成本、高可靠、可 重复使用功能的运载器成为热点[1-3]。液氧/甲烷 动力系统以其推进剂成本低,可重复使用,无毒度 污染,使用维护方便、综合性能好等优点得到了各 国航天机构的青睐。目前具有代表性的有美国 SpaceX公司的"猛禽"、美国蓝色起源公司的BE-4、俄罗斯的 RD-0162、中国的"天鹊" TQ-12, 以及 欧盟的"普罗米修斯"等发动机动力系统[4]。

可重复使用运载器由于再入过程中经历微重 力、常重力到超重等复杂加速度场变化,贮箱内推 进剂与增压气体很难保持稳定的界面,可能气液夹 杂,处理不当会导致主发动机再次启动时泵入口夹 气,会带来灾难性后果[5-6]。因此,开展发动机再次 启动前推进剂管理研究是十分必要的。

国内外在液体火箭动力系统推进剂管理领域 已进行了大量的研究工作,开展了相关的关键技术

收稿日期:2021-05-10;修订日期:2021-06-25

通信作者:罗盟,男,博士,工程师,E-mail: luomeng1213@163.com。

引用格式:罗盟,陈士强,李大鹏,等.星舰动力特点及再入过程推进剂流动仿真研究[J].南京航空航天大学学报,2021, 53(S):9-16. LUO Meng, CHEN Shiqiang, LI Dapeng, et al. Characteristics of starship propulsion system and numerical simulation of propellant flow during reentry [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(S): 9 - 16

研究。Himeno等^[7], Aoki等^[8]对垂直起降回收技 术中贮箱流体晃动进行了试验和仿真研究,研究表 明贮箱内的隔板结构对推进剂晃动具有很好的抑 制作用。Behruzi等^[9]对阿里安5上面级分离过程 中氢箱推进剂流动进行了仿真研究,发现分离过程 中外界引起的加速度变化严重影响贮箱推进剂气 枕压力变化。国内褚桂敏^[10]、邓新宇等^[5]、刘展 等^[11]、杨唱等^[12]、尕永婧等^[13]从推进剂晃动特性、 传热特性等方面开展了大量仿真工作,研究成果对 变过载下流体晃动特性的认识具有重要意义。对 于以星舰为代表的复杂再入过程中(如独特的箭体 垂直翻转等动作)贮箱内推进剂流动的研究较少, 目前尚未找到相关公开发表的资料,加之我国重复 使用运载器正处于研发阶段,尚无工程应用经验, 缺乏相关支撑材料。因此,本文对 SpaceX 星舰进 行了相关调研,探索了其动力系统关键技术特点, 在此基础上对星舰 SN10 实际再入过程中贮箱推 进剂流动特性进行三维仿真研究,为我国新一代可 重复使用运载器再入方案研究提供参考。

1 星舰动力系统

星舰原型机从SN8后采用了全不锈钢舰体结构,其高50m,直径9m,主要包括甲烷大、小贮箱, 液氧大、小贮箱,三台"猛禽"发动机,反作用控制系统(Reaction control system, RCS)以及箭体底部和头锥处的两对襟翼。其推进剂贮箱为3mm厚的304L不锈钢结构;RCS系统采用了氮气推进; 襟翼使用电池组驱动;"猛禽"发动机采用了全流量 分级燃烧循环(Full flow staged combustion cycle, FFSCC)。

图1给出了星舰原型机结构示意图。

1.1 分级燃烧循环系统

为提高火箭发动机的性能,人们对发动机循环 方式进行了大量的探索。1949年,俄罗斯人阿列 克谢·伊萨耶夫首次提出了分级燃烧循环。此后, S1.5400(11D33)成为第一台采用分级燃烧循环的 发动机。在探索分级燃烧循环发动机的历程中,美 国和俄罗斯作为两个航天大国,各自主要选择了预 燃室富氧燃烧和富燃燃烧的道路,如以RD-170等 为代表的预燃室富氧燃烧的液氧/煤油发动机和以 航天飞机主发动机SSME为代表的预燃室富燃燃 烧氢/氧发动机。在实际研究中,困难和挑战不断, 液氧/煤油发动机的富燃燃烧存在结焦问题,而富 氧燃烧带来了材料的氧化问题。氢/氧发动机虽然 不存在结焦的问题,但液氢与液氧密度相差大,其 对燃泵的尺寸和驱动方式均有较高的要求。并且, 其还存在氧泵与富燃燃气的隔离密封难题。

SpaceX 另辟蹊径,开发了以液氧/甲烷为推进 剂的 FFSCC 液体火箭发动机——"猛禽"发动机。 目前,"猛禽"发动机是历史上第三台采用 FFSCC 技术的发动机。其一是 1960 年代前苏联研发的 RD-270,未经过飞行验证;其二是 2000 年代中期 美国航空喷气公司和洛克达因合作研发的"集成动 力验证器",但未经整体试车验证;第三则是 SpaceX 研发的"猛禽"发动机,其创造了迄今最高 的燃烧室压力,室压可达 30 MPa。海平面推力可 达 2 250 kN(真空 3 500 kN),地面比冲 334 s(真空 382 s),推力可深度调节至 40%。

图 2 给出了"猛禽"发动机及其工作原理示意 图,其工作如下:

液氧路。推进剂开始加注后,液氧在箱压和重 力作用下自流进入氧化剂涡轮泵,直到氧主阀和氧 副控阀,并通过预泄阀进行排放预冷。发动机工作 后,液氧经过氧泵后分3路:大部分液氧进入氧预 燃室参加富氧燃烧推动氧化剂泵做功,随之进入主 推力室进行补燃;一部分液氧通过氧副控阀进入甲 烷预燃室参加富燃燃烧;剩余一小部分通过氧涡轮 腔中的换热器与高温富氧燃气进行换热,提供氧箱 自生增压。

液甲烷路。推进剂开始加注后,液甲烷在箱 压和重力作用下自流进入燃泵,直到燃主阀,并通 过燃预泄阀进行排放预冷。发动机工作后,液甲 烷经过主阀、流向喷管集液环后分3路:一部分液 甲烷通过喷管冷却套冷却喷管延伸段,再沿喷管 壁回流引入液甲烷混合管路;一部分沿推力室冷 却夹套流向推力室头部,再进入混合管路;剩余部 分的液甲烷直接进入甲烷混合管路。混合管中的 液甲烷流入甲烷预燃室参与富燃燃烧,以驱动燃 泵。在液甲烷混合管路上,又分出两支路:一路通 过燃副控阀进入氧预燃室参加富氧燃烧;另一部 分通过燃涡轮腔中的换热器与高温富燃燃气换热 后进行燃箱自生增压。

全部的富氧燃气和富燃燃气再经过同轴离心 式喷嘴进入主推力室,进行补燃,产生推力。"猛禽" 发动机的FFSCC设计,使得涡轮机的工作温度更

图 2 "猛禽"发动机及其原理图^[15] Fig.2 "Raptor" engine and its schematic diagram

低(~811 K),因而发动机的寿命得到延长,效率也 更高^[16]。FFSCC设计使得燃烧室的压力可以更 大,并且进入主燃烧室的是气-气燃烧,燃烧效率 高,发动机比冲更高。针对氧预燃室的高温高压富 氧气体带来的材料氧化问题,SpaceX公司专门研 发了SX500超级合金用于氧预燃室^[17]。

"猛禽"发动机系统的其他独特之处有:氧、燃 涡轮泵初始启动均采用了气体旋转启动装置,其气 体旋转是通过喷入氦气实现(另一种说法是通过火 花塞点火产生燃气直接启动)。

1.2 点火系统

在"猛禽"发动机的点火方式上,SpaceX公司 舍弃了其应用于猎鹰9号和猎鹰重型的成熟技术, 即三乙基铝-三乙基硼烷(Aluminumtriethyl-Triethylboron, TEA-TEB)自燃点火,而采取了火花塞点 火技术^[13]。

一方面,TEA-TEB点火方式带来了局限性, 其易于在空气中自燃,需要在氮气或氩气环境中保存,因此每次点火都需要消耗一个新的"点火筒", 这从根本上限制了发动机的点火次数,不利于重复 使用。另一方面,"猛禽"发动机极高的室压环境给 TEA-TEB的自燃可靠点火也带来了较大的挑战。 此外,TEA-TEB是极其复杂的化学产品,至少在 无限的将来几乎不可能从地球以外生产出来,这不 利于星舰的火星移民等初衷。而火花塞点火技术 不存在重复使用受限问题,并且该技术已成功应用 于氢/氧分级燃烧循环发动机,如航天飞机主发动 机 SSME。

"猛禽"发动机的两个预燃室和主推力室均 采用了火花塞点火。气甲烷和气氧在点火器的 点火室中燃烧,高温燃气形成火炬,点燃预燃室 和主推力室。"猛禽"发动机点火系统示意图 见图3。

图 3 "猛禽"点火系统^[15] Fig.3 Ignition system of "Raptor"^[15]

1.3 增压输送系统

由于重复使用的要求,星箭动力系统存在变过

载情况下推进剂管理难题。星舰采用两个头部小 贮罐来进行发动机着陆启动阶段的推进剂管理。 星舰的氧箱、甲烷箱均采用了自生增压方案。液 氧、液甲烷分别通过与各自预燃室的高温燃气换热 后给贮箱增压。头部小贮罐则采用氦气增压与自 生增压的组合方案。甲烷输送系统采用中心隧道 管布局。液甲烷通过隧道管穿过氧箱,并在氧箱底 部通过五通与3台"猛禽"发动机的燃泵连接。目 前SN8~SN11结构中的五通均布局在液氧贮箱内 部,SN12将五通进行了设计改进,并拟布局在液氧 箱外,以减少箱底过多的焊接孔结构(见图4)。液 氧通过氧箱内底部的三通与氧泵连接,其三通的一 个接口连接液氧头部小贮罐输送管。液氧是通过 氧箱底部的加注管路进行加注,液甲烷是通过与甲 烷隧道管底部五通的一个连接口进行加注。

该系统的独特之处是头部小贮罐的供给切换。在发射上升阶段,采用甲烷、氧大贮箱供给推进剂。在再入着陆阶段,推进剂供应系统切换至头部小贮罐。图5给出了着陆过程星舰模型剖视图。可以看出在着陆阶段,液甲烷、液氧大贮箱剩余推进剂很少,但头部小贮罐中均充满了推进剂。推进剂供应系统切换至贮罐后,其满足发动机二次启动初始条件。

图 4 星舰增压输送系统图^[18] Fig.4 Pressurization and feeding system of Starship^[18]

图 5 着陆过程星舰模型剖视图[15]

Fig.5 Section view of Starship model during the reentry $$stage^{15}$$

2 飞行任务剖面

图 6 给出了星舰 SN8~SN10 的飞行任务剖面。其中, SN8 与 SN9 任务着陆失败。SN8 由于 甲烷头部小贮罐压力不足,导致着陆时发动机推力 不足,于起飞后 6 min 42 s以近 30 m/s 触地爆炸。 SN9 对小贮罐增加了氦气增压方案, 解决了贮罐压 力问题,但由于着陆时一台发动机未成功启动,导 致星舰着陆反推力不足,于起飞后6min26s触地 爆炸。SN10在着陆过程中,采取了启动3台发动 机,依次关闭两台的策略,于起飞后6min20s成功 着陆^[19]。

图 6 星舰 SN8~SN10飞行剖面^[15] Fig.6 Flight profile of Starship SN8—SN10^[15]

以成功飞行着陆的SN10为例,表1给出了星舰飞行关键动作时序。

表1 SN10飞行关键动作时序

Table 1 Time-sequences of key actions during the SN10 flight

时序	关键动作
00:00:00	3台"猛禽"发动机点火
00:01:42	一台发动机关机,另外两台摆动控制,保持舰
	体姿态稳定
00:03:14	令一台发动机关机,星舰靠一台发动机飞行
00:04:40	最后一台发动机关机,最后达到10km,RCS
	系统和翼面联合调姿,舰体转平
00:06:00	3台发动机重新点火,箭体垂直翻转,依次关
	闭两台发动机
00:06:20	箭体靠一台发动机垂直着陆成功

3 再入过程仿真分析

星舰再入过程中经历了"腹部俯拍式"自由落 体、气动飘落、箭体翻转、发动机动力减速等一系列 变化,贮箱内推进剂同样经历了从微重力到常重力 到超重的复杂加速度场变化,导致了贮箱内复杂的 流动(包括液面晃动、卷吸、冲刷等)。由于在自由 飘落过程中,主发动机不工作,并且在相同初始气 枕、液体体积下,参与微重力晃动的液体量低于常 重力场下的液体量^[20],故本节对星舰的飘落过程 不做研究,重点研究了发动机二次启动阶段的着陆 过程,并基于限体积法(Volume of fraction, VOF) 进行了大贮箱内推进剂流动、晃动特性的仿真计算。

需要说明的是,星舰在二次启动过程中采用了 独立小贮罐(充满推进剂)供给方案。本节通过研 究大贮箱里推进剂的流动,一方面可以揭示推进剂 复杂加速度场下的流动、晃动特性,另一方面也可 以解释星舰选择小贮罐启动方案的缘由。

3.1 仿真模型及方法

本文基于典型的VOF方法计算再入过程中贮 箱内推进剂流动特性。VOF方法是采用体积比函 数α(表示流体在计算单元里所占的体积比率)来 确定自由液面,追踪流体的变化。具体定义为

$$\alpha = 0$$
 该单元为纯气体相

 $0 < \alpha < 1$
 该单元含气液界面
 (1)

 $\alpha = 1$
 该单元为纯液体相

在包含自由边界单元中(0<α<1),计算α函数变化梯度确定边界的法向,然后根据α的值和边界法向确定自由界面的位置。

在固定的欧拉网格下,气、液两相使用统一的 连续方程、动量方程和能量方程,具体见文献[5, 12]。两相参数φ(如密度、黏性等)采用体积分数α 加权平均,计算如下

$$\varphi = \alpha \varphi_1 + (1 - \alpha) \varphi_2 \tag{2}$$

由于本计算中液相密度、黏性远大于气相,故 计算中可取 $\varphi_2=0$,仅考虑液相^[5]。

对于自由液面表面张力的计算采用连续表面 力(Continuum surface force, CSF)模型^[21],其将表 面张力视为界面单元所受的体积力*f*_s,并以源项形 式加入流体的动量方程中。

$$f_{\rm s} = -\sigma \frac{\boldsymbol{n}(\nabla \hat{\boldsymbol{n}})}{\rho_{\rm L}} \tag{3}$$

式中: σ 为液体表面张力系数; $\hat{n} = n/|n|, n$ 为界面 法向量; ρ_{\perp} 为液体密度。

计算域为整个推进剂贮箱。为简化分析模型, 忽略贮箱内其他防晃、导流板等结构,建立空贮箱 模型。计算介质为液氧。贮箱内初始填充部分液 氧,剩余部分为气枕,初始充液比为21.5%,见 图7。计算模型均采用六面体网格划分,网格数约 100万个。壁面采用无滑移边界条件,近壁处流动 采用标准壁面函数处理。给定压力常值作为气枕 压力边界。计算中给定箭体着陆过程中的过载-时 间曲线来描述加速度场变化。

通过对SN10的发射视频数据流进行分析,得 到了发动机二次启动后星舰着陆过程的过载曲线 (忽略箭体转动),见图8。

由图可知,由于星舰的"俯拍式"再入,星舰由 初始的自由落体状态逐渐处于飘落减速状态。在 发动机二次点火前,其过载约为1.03g。此时3台

图8 星舰着陆过程中过载曲线

Fig.8 Acceleration-time diagram during the Starship landing

发动机短时间内依次点火,箭体过载逐渐增加至最 大值,约2.57g。之后,由于发动机关机,过载迅速 减小至1.1g左右,并基本维持该过载直至安全 着陆。

3.2 仿真方法验证

本节采用 Himenoh^[7]的试验数据对本文仿真 方法进行验证。Himenoh 研究了直径 0.2 m,高 0.2 m的模型贮罐中水的晃动特性。试验过程中通 过步进电机提供-0.8g~0.8g 随时间线性变化的 径向加速度,轴向加速度为常重力值 1.0g。具体试 验见文献[7]。

通过仿真得到了径向加速度变化条件下贮箱 内部水的晃动情况。图9给出了模拟和试验结果 对比图。由图可见,仿真捕捉到了流体在变过载条 件下的晃动特性,数值模拟得到的各个时刻流体晃 动型面与试验结果基本吻合,这也验证了本文仿真 方法和模型的合理性。

3.3 星舰仿真结果分析

3.3.1 流动分析

图 10还原了星舰着陆过程中贮箱内液氧的流动情况。由右半图仿真结果可知,贮箱内液氧在发动机点火后的前6s呈现出了大幅的晃动。对比左

增刊

图 9 水晃动数值模拟与试验对比

Fig.9 Comparison of simulation results to experiments of water sloshing

侧的实际飞行图片,可以看出这是由于在该时间段 内,星舰基本完成了从水平到垂直的姿态调整。发 动机施加给箭体的加速度场变化剧烈,贮箱在较大 过载梯度下,推进剂自由表面失去稳定性,从而产 生了随过载变化的剧烈晃动。

图 10 星舰着陆过程贮箱液氧流动情况 Fig.10 LOx behavior during the Starship landing stage

约6s之后,由于此箭体基本在垂直状态下进 行微调平衡,横向加速度场变化较小,虽然轴向加 速度在6~7s由于发动机关机出现大幅下降,但仿 真结果表明,此时间段贮箱内液氧表面并未出现大 幅晃动。这是由于箭体基本处于垂直状态,而正向 的轴向过载对贮箱内液体的晃动具有抑制作用。

在 9.6~14 s 阶段,推进剂液面维持在小幅度 自由晃动状态。这是由于星舰的过载在此时间段 基本维持不变(约1.1g,见图 8)。

针对气液界面的问题,可以考察表征气液界面的稳定条件。理论和试验研究表明,有加速度作用时的界面稳定条件可用邦德数B₀表示为^[22]

$$B_0 = \frac{\rho g r^2}{\sigma} = 0.84 \tag{4}$$

式中:B₀表示惯性力和表面张力的比值, ρ为液体 密度, g为加速度, r为特征尺寸(箱体半径), σ为液 体表面张力。

在星舰发动机二次启动后的着陆过程中,其过 载均大于1g。经计算,着陆过程中 B_0 在10⁶量级, 远远大于界面稳定性条件。

由于星舰实际飞行中受到发动机、气动环境等 较多外界因素的影响,仅仅考虑邦德数是不够的, 还需考虑外界施加给推进剂的能量^[23]。这时,可 用佛鲁德数*Fr*表征其稳定性

$$Fr = \frac{V^2}{gr} \tag{5}$$

式中Fr表示惯性力和流体重力的比值。

箭体受到过载变化前后,其液面晃动幅系数K 可由Fr预估^[23]

$$K = \frac{h}{r} \approx 0.74 \left(\frac{V^2}{ar}\right)^{\frac{1}{2}} = 0.74 (Fr)^{\frac{1}{2}} \qquad (6)$$

式中:h为晃动幅值,r为箱体半径,V为流体运动 速度,a为加速度。

由式(6)计算得到,在初始前6s内,贮箱内液 氧表面晃幅(非质心晃幅)可达箱体半径的2~5 倍,而在着陆后期,其晃幅降低至约半径的0.5倍 甚至更小,这基本吻合图10的仿真结果。

图11 贮箱内液氧压力和流型分布

Fig.11 Pressure distribution and LOx surface profile during slashing

图 11 给出了几个时刻点贮箱流动特征(压力 分布、液体型面)。从图可知,在初始时刻,即发动 机二次点火时刻,箭体处于水平状态,X方向压力 场分布均匀。发动机点火后,轴向过载突然增加, 液氧在过载变化下失去稳定性,流向贮箱底部,流 体的压力分布出现不均匀性,在贮箱左下方区域压 力最大。在2.2~2.4 s时间段,贮箱底部逐渐出现 严重夹气现象,气-液两相会给发动机的工作带来 灾难性后果。之后液体表面由于惯性和轴向、横向 加速度变化综合效应,出现较大幅度的晃动(如图 中*T*=3.2 s)。随着轴向加速度逐渐增加,液氧整 体晃幅逐渐减小,贮箱底部一直处于满液状态,这 可以保证发动机涡轮启动要求。

由于夹气现象,常规的贮箱增压供给系统无法 满足星舰的再入着陆方案。从而 SpaceX 针对此着 陆方案设计了推进剂头部小贮罐独立供给系统,避 免了大贮箱底部大量夹气造成发动机正常启动的 安全隐患。

3.3.2 晃动特性

图 12给出了星舰着陆过程中,液氧整体质心 位置随时间变化关系。可以看出,在着陆阶段,发 动机启动后,贮箱推进剂Z方向质心位置在初始 2 s内迅速下降了约2.2 m,X方向质心位置变化了 约 1.5 m,这是由于此阶段3台发动机依次启动,在 推力力矩下,箭体从水平状态(X方向)迅速向竖直 状态调整(Z方向)。随后在2~6 s内,推进剂Z,X 方向质心位置分别在±0.12 m、±0.5 m的范围内 波动,该时间段液氧Z向质心晃幅可达20%(液面 稳定后质心高度约0.62 m)。之后,液氧质心在Z 方向基本维持稳定值,箭体在X方向连续小幅度调 整,X方向质心位置维持在±0.2 m左右,直至着 陆。由于仿真模型忽略了箭体的周向转动,箭体Y 方向的质心波动较X与Z方向小一个量级, 在±0.02 m范围内。

图 13 对液氧质心晃动位移进行了频域分析, 给出了其晃动频率曲线。由图可知,在SN10着陆 过程中,其Z方向(箭体轴向)晃动幅度较大,但其 一阶频率较低,约0.05 Hz,而X方向(箭体径向)的 一阶频率在0.1 Hz、Y方向在0.5 Hz左右。该晃动 频率较典型的箭体增压输送系统频率低一个量级 以上。因此,星舰氧箱内推进剂的晃动对发动机输

Fig.12 LOx mass center position-time diagram during the Starship landing

送系统频率的影响可以忽略。

综上,通过对星舰着陆过程的仿真表明,星舰 在着陆过程中贮箱内液氧产生了复杂的晃动,导致 液氧箱底在多个时刻均存在大量夹气情况,这不满 足发动机再次启动条件。因此,在二次启动前,星 舰采取了独立的头部小贮罐推进剂供给方案。

SN10虽然成功完成了箭体的水平转垂直着陆 过程,但在着陆后8min左右却发生了爆炸。 SpaceX解释其可能是由于甲烷头部小贮罐中增压 氦气进入发动机,导致火箭推力偏低,着陆速度稍 快,箭体结构受损,引起了爆炸^[19]。由此可见,目 前小贮罐推进剂供给方案并没有彻底解决着陆过 程贮箱底部夹气的隐患,其推进剂管理方案还需优 化改进。

4 结 论

本文总结了 SpaceX 星舰动力系统关键技术特 点,在此基础上对星舰 SN10 的实际飞行再入过程 进行了数值仿真,揭示了星舰着陆阶段复杂加速度 场下贮箱内液氧的流动特性。仿真结果表明,在着 陆过程中,液氧贮箱底部存在大量夹气现象;贮箱 内液氧轴向质心晃动幅度可达 20%,但晃动频率 较低(<0.6 Hz);由于夹气现象,常规的贮箱增压 供给系统无法满足星舰的再入着陆方案。对此, SpaceX 采用了独特的头部小贮罐供给方案,其技 术可以借鉴。但 SN10 的飞行结果表明,目前此方 案并没有彻底解决着陆过程贮箱底部夹气的隐患, 星舰的推进剂管理方案还需优化改进。

参考文献:

[1] HAIDN O, OSHWALD M, CLAUSS W, et al. LOX/Methane technology efforts for future liquid rocket engines[C]//Proceedings of the 5th International Spacecraft Propulsion Conference & 2nd International Symposium on Propulsion for Space Transportation. Crete, Greece:[s.n.], 2008: 5-8.

[2] 陈士强,黄辉,邵业涛,等.航天动力系统未来需求

方向及发展建议的思考[J]. 宇航总体技术, 2019, 3 (1): 62-70.

CHEN Shiqiang, HUANG Hui, SHAO Yetao, et al. Study on the requirement trend and development suggestion for Chinaspace propulsion system[J]. Astronautical Systems Engineering Technology, 2019, 3 (1): 62-70.

 [3] 陈士强,黄辉,张青松,等.中国运载火箭液体动力 系统发展方向研究[J]. 宇航总体技术,2020,4(2):
 1-12.
 CHEN Shiqiang, HUANG Hui, ZHANG Qingsong,

et al. Research on the development directions of Chinese launch vehicle liquid propulsion system[J]. Astronautical Systems Engineering Technology, 2020, 4 (2): 1-12.

- [4] 尹亮,刘伟强.液氧E甲烷发动机研究进展与技术 展望[J].航空兵器,2018(4):21-27.
 YIN Liang, LIU Weiqiang. Review and prospect of LOX Methane rocket engine systems[J]. Aero Weaponry, 2018(4):21-27.
- [5] 邓新宇,唐一华,黄兵,等.推进剂重定位数值仿真
 [J].导弹与航天运载技术,2009,299(1):11-14.
 DENG Xinyu, TANG Yihua, HUANG Bing, et al.
 Numerical simulation of propellant reorientation[J].
 Missile and Space Vehcile, 2009, 299(1):11-14.
- [6] 肖立明,李欣,侍野,等.长时间在轨上面级动力系统关键技术研究[J]. 宇航总体技术,2020,4(6):23-28.

XIAO Liming, LI Xin, SHI Ye, et al. Research on the key technology of the upper stage propulsion system for long-duration space mission[J]. Astronautical Systems Engineering Technology, 2020, 4(6): 23-28.

- [7] HIMENO T, WATANABE T, NONAKA S, et al. Sloshing prediction in the propellant tanks of VTVL rocket vehicle[C]//Proceedings of the 41st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, USA: [s.n.],2005: 10-13.
- [8] AOKI K, NAKAMURA T, IGARASHI I, et al. Experimental investigation of baffle effectiveness on nonlinear propellant sloshing in RLV[C]// Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, USA:[s.n.], 2007: 8-11.
- [9] BEHRUZI P, MICHAELIS M, KHIMECHE G. Behavior of the cryogenic propellant tanks during the first flight of the ariane 5 ESC-A upper stage[C]// Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati, USA:[s.n.], 2006: 9-12.
- [10] 褚桂敏.低温上面级滑行段的推进剂管理[J].导弹 与航天运载技术,2007,287(1):27-31.
 CHU Guimin. Propellant management of cryogenic upper stage during coast[J]. Missile and Space Vehcile,

2007, 287(1): 27-31.

- [11] 刘展,冯雨,杨雷刚,等.低温液氧贮箱晃动过程热 力耦合特性[J].化工学报,2018,69(S2):61-67. LIU Zhan, FENG Yu, YANG Leigang, et al. Coupled thermal dynamic performance in cryogenic liquid oxygen tank under slosh excitation[J]. CIESC Journal, 2018, 69(S2): 61-67.
- [12] 杨唱,孙冰,方杰.航天器贮箱出流过程液体晃动及防晃[J].航空动力学报,2018,33(12):3065-3072.
 YANG Chang, SUN Bing, FANG Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow
 [J]. Journal of Aerospace Power, 2018, 33(12): 3065-3072.
- [13] 尕永婧,王浩苏,张青松,等.垂直着陆过程推进剂 流动行为特性及影响分析[J].深空探测学报,2021, 8(1):42-49.
 GA Yongjing, WANG Haosu, ZHANG Qingsong, et al. Propellant flow characteristics in tank and related impact analysis during the vertical landing stage[J]. Journal of Deep Space Exploration, 2021, 8(1):
- [14] ADAMY R. https://twitter. com/fael097/status/ 1342980512579690496/photo/3,2020-12-27.
- [15] SpaceX/Starship.http://www.reddit.com/r/spacex.

42-49.

- [16] 王海燕,高玉闪,邢理想.全流量补燃循环液氧甲烷 发动机系统方案研究[J].载人航天,2019,25(2): 236-242.
 WANG Haiyan, GAO Yushan, XING Lixiang. Research on schemes of full flow staged combustion cycle liquid oxygen/liquid methane engine system[J]. Manned Spaceflight, 2019, 25(2): 236-242.
- [17] WANG B. SpaceX casting raptor engine parts from supersteel alloys [EB/OL].(2019-02-18).https://www. nextbigfuture.com/2019/02/spacex-casting-raptor-engineparts-from-supersteel-alloys.html.
- [18] ADAMY R. https://twitter.com/fael097/ status/1324 479821997608960/photo/1,2020-11-06.
- [19] MUSK E. https://twitter. com/elonmusk/status/ 1369379914139451406,2021-05-10.
- [20] SALZMAN J A, LABUS T L, MASICA W J. An experimental investigation of the frequency and viscous damping of liquids during weightlessness[R]. Cleveland, USA: Lewis Research Center, 1967.
- [21] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
- [22] MASICA W J. Hydrostatic stability of the liquidvapor interface in a low-acceleration field[R]. Cleveland, USA: Lewis Research Center, 1964.
- [23] LACOVIC R F, YEH F C, SZABO S V, et al. Management of cryogenic propellants in a full-scale orbiting space vehicle[R]. Cleveland, USA: Lewis Research Center, 1968.