南京航空航天大学学报  2017, Vol. 49 Issue (2): 269-275   PDF    
基于非标准Lagrange函数的动力学系统的广义能量积分与Whittaker降阶法
周小三1, 张毅2     
1. 苏州科技大学数理学院,苏州,215009;
2. 苏州科技大学土木工程学院,苏州,215009
摘要: 研究基于非标准Lagrange函数的动力学系统的广义能量积分和Whittaker降阶方法。首先,基于指数Lagrange函数和Lagrange函数幂函数两类非标准Lagrange函数,定义了相应的Hamilton作用量,建立了该系统的Hamilton原理,给出了系统的Lagrange方程。其次,利用系统的Lagrange方程,建立了基于非标准Lagrange函数的广义能量积分存在的条件及形式。然后,将著名的Whittaker降阶法加以推广,得到了基于非标准Lagrange函数的动力学系统的Whittaker方程。最后,以算例验证了本文结果。
关键词: 非标准Lagrange函数     非线性动力学     广义能量积分     Whittaker降阶法    
Generalized Energy Integral and Whittaker Method of Reduction for Dynamics Systems with Non-standard Lagrangians
ZHOU Xiaosan1, ZHANG Yi2     
1. School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China;
2. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
Abstract: The generalized energy integral and Whittaker method of reduction for the dynamics system based on non-standard Lagrangians are studied. Firstly, in view of two kinds of non-standard Lagrangians, i.e., exponential Lagrangians and power law Lagrangians, the Hamilton action with non-standard Lagrangians is defined, and the Hamilton principles and the Lagrange equations of the system are obtained. Secondly, the condition under which the generalized energy integral with non-standard Lagrangians exists and the form of generalized energy integral are established by using the Lagrange equations of the system. Thirdly, the famous Whittaker method of reduction is extended, and the Whittaker equations for the dynamics system with non-standard Lagrangians are obtained. Finally, an example is given to illustrate the application of the results.
Key words: non-standard Lagrangians     nonlinear dynamics     generalized energy integral     Whittaker method of reduction    

自然界中最普遍的问题都是关于非保守非线性问题,而非线性问题可用非标准Lagrange函数的变分问题来解决,因此研究基于非标准Lagrange函数的动力学系统具有重要的理论意义与应用价值。事实上,非标准Lagrange函数的思想可以追溯至1978年Arnold的工作[1-2]。但是由于缺乏与之对应的哈密顿形式而被忽视,弦理论[3-5]中被重新考虑。与标准Lagrange函数表示为动能和势能之差不同,非标准Lagrange函数没有关于动能和势能的明显区分,具有指数形式、对数形式等。这种不规则的Lagrange函数凭借其在非线性动力学系统[6-8]、耗散系统[9-12]和量子场理论[13-15]中的重要作用引起了学者们的关注。Musielak[9-10]研究了耗散系统中获得非标准Lagrange函数的方法及其存在的条件。El-Nabulsi[15]研究了非线性动力学系统基于两类非标准Lagrange函数的作用量及动力学方程。在宇宙学方面,非标准Lagrange函数也扮演了重要角色,Dimitrijevic[16]等将非标准Lagrange函数考虑进现代宇宙学模型中,研究了其运动方程。EL-Nabulsi[17]应用非标准Lagrange函数到Friedmann-Robertson-Walker时空,讨论了它在宇宙学中的影响。关于非标准Lagrange函数应用的研究还有其他一些重要成果[18-22],但尚未涉及能量积分及降阶法。

动力学系统的守恒量,表现为深刻的物理规律。分析力学发展后,通过循环积分[23-26]和广义能量积分[27-31]可以寻求系统的守恒量从而对系统约化。1904年, Whittaker[32]利用能量积分降阶了完整保守系统的运动方程,得到了Whittaker方程。之后,Whittaker降阶法引起了学者们的关注。然而,目前为止,对Whittaker方程的研究限于标准Lagrange函数系统。

本文将研究动力学系统基于指数Lagrange函数和Lagrange函数幂函数的广义能量积分及降阶方法。通过变分方法得到系统的Lagrange方程,给出系统广义能量积分存在的条件及形式,建立基于两类非标准Lagrange函数的动力学系统的Whittaker方法。

1 基于指数Lagrange函数的动力学系统的广义能量积分与Whittaker降阶法 1.1 Lagrange方程

假设系统的位形由n个广义坐标qs(s=1, 2, …, n)确定,则基于指数Lagrange函数的作用量定义为[15]

$ S = \int_{{t_1}}^{{t_2}} {\exp \left[ {L\left( {t,{q_s},{{\dot q}_s}} \right)} \right]{\rm{d}}t} $ (1)

式中:L=L(t, qs, ${\dot q_s}$)为经典意义下的Lagrange函数。与基于指数Lagrange函数的作用量式(1) 相应的Hamilton原理可写为

$ \delta S = 0 $ (2)

带有交换关系

$ d\delta {q_s} = \delta {\rm{d}}{q_s}\;\;\;\;\;s = 1,2, \cdots ,n $ (3)

以及边界条件

$ \delta {q_s}\left| {_{t = {t_1}}} \right. = \delta {q_s}\left| {_{t = {t_2}}} \right. = 0\;\;\;\;\;s = 1,2, \cdots ,n $ (4)

因为

$ \begin{array}{*{20}{c}} {\delta \exp \left( L \right) = \sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}}\delta {q_s}} + \sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {{\dot q}_s}} = }\\ {\sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}}\delta {q_s}} + \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {q_s}} } \right) - }\\ {\sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {q_s}} - \sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{\partial L}}{{\partial t}}\delta {q_s}} } \end{array} $ (5)

将式(5) 代入式(2),有

$ \begin{array}{*{20}{c}} {\int_{{t_1}}^{{t_2}} {\sum\limits_{s = 1}^n {\left( \begin{array}{l} \exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}} - \exp \left( L \right)\frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \\ \;\;\;\;\;\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{\partial L}}{{\partial t}} \end{array} \right)} } \delta {q_s}{\rm{d}}t + }\\ {\sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {q_s}} \left| {_{{t_1}}^{{t_2}}} \right. = 0} \end{array} $ (6)

利用边界条件式(4),得到

$ \int_{{t_1}}^{{t_2}} {\sum\limits_{s = 1}^n {\left( \begin{array}{l} \exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}} - \exp \left( L \right)\frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \\ \;\;\;\;\;\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{\partial L}}{{\partial t}} \end{array} \right)} } \delta {q_s}{\rm{d}}t = 0 $ (7)

对于完整系统,δqs(s=1, 2, …, n)相互独立,由变分学基本引理[33],得到

$ \begin{array}{*{20}{c}} {\exp \left( L \right)\left( {\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right) = 0}\\ {s = 1,2, \cdots ,n} \end{array} $ (8)

方程式(8) 称为基于指数Lagrange函数的动力学系统的Lagrange方程[15]

1.2 广义能量积分

为了得到所论系统的广义能量积分,计算

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {\sum\limits_{s = 1}^n {{{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} - 1} \right)\exp \left( L \right)} \right] = \\ \;\;\;\;\sum\limits_{s = 1}^n {\exp \left( L \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} + \exp \left( L \right){{\ddot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} + \\ \;\;\;\;\exp \left( L \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \exp \left( L \right)\frac{{{\rm{d}}L}}{{{\rm{d}}t}} = \\ \;\;\;\;\sum\limits_{s = 1}^n {\exp \left( L \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} + \exp \left( L \right){{\ddot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} + \\ \;\;\;\;\exp \left( L \right){{\dot q}_s}\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \\ \;\;\;\;\exp \left( L \right)\left( {\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + \frac{{\partial L}}{{\partial {q_s}}}{{\dot q}_s} + \frac{{\partial L}}{{\partial {{\dot q}_s}}}{{\ddot q}_s}} \right) = \\ \;\;\;\;\sum\limits_{s = 1}^n {\left[ {\left( {\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \frac{{\partial L}}{{\partial {q_s}}}} \right){{\dot q}_s} - \frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right]} \exp \left( L \right) \end{array} $ (9)

由方程式(8,9) 知,如果Lagrange函数不显含时间t,即

$ \frac{{{\rm{d}}L}}{{{\rm{d}}t}} = 0 $ (10)

则沿着系统的动力学轨线有

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {\sum\limits_{s = 1}^n {{{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} - 1} \right)\exp \left( L \right)} \right] = 0 $ (11)

于是系统存在广义能量积分

$ \left( {\sum\limits_{s = 1}^n {{{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} - 1} \right)\exp \left( L \right) = h = {\rm{const}} $ (12)
1.3 Whittaker降阶法

任取一个广义坐标代替t的作用,如取q1,令

$ {{q'}_r} = \frac{{{\rm{d}}{q_r}}}{{{\rm{d}}{q_1}}}\;\;\;\;\;\;r = 2,3, \cdots ,n $ (13)

则有

$ {{q'}_r} = \frac{{{\rm{d}}{q_r}}}{{{\rm{d}}{q_1}}}\frac{{{\rm{d}}{q_1}}}{{{\rm{d}}t}} = {{q'}_r}{{\dot q}_1}\;\;\;\;r = 2,3, \cdots ,n $ (14)

$ \exp {L^ * }\left( {{{\dot q}_1},{{q'}_r},{q_s}} \right) = \exp L\left( {{{\dot q}_1},{{q'}_r}{{\dot q}_1},{q_s}} \right) $ (15)

将式(15) 对${\dot q_1}$, q′r, qs分别求偏导数,得

$ \begin{array}{*{20}{c}} {\exp \left( {{L^ * }} \right) = \frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} = \exp \left( L \right)\left( {\frac{{\partial L}}{{\partial {{\dot q}_1}}} + \sum\limits_{r = 2}^n {\frac{{\partial L}}{{\partial {{\dot q}_r}}}\frac{{\partial {{\dot q}_r}}}{{\partial {{\dot q}_1}}}} } \right) = }\\ {\exp \left( L \right)\left( {\frac{{\partial L}}{{\partial {{\dot q}_1}}} + \sum\limits_{r = 2}^n {\frac{{\partial L}}{{\partial {{\dot q}_r}}}\frac{{\partial {{\dot q}_r}}}{{\partial {{\dot q}_1}}}} } \right) = \sum\limits_{s = 1}^n {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{{\dot q}_s}}}{{{{\dot q}_1}}}} } \end{array} $ (16)
$ \begin{array}{*{20}{c}} {\exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{q'}_r}}} = \exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_r}}}\frac{{\partial {{\dot q}_r}}}{{\partial {{\dot q}_1}}}}\\ {r = 2,3, \cdots ,n} \end{array} $ (17)
$ \begin{array}{*{20}{c}} {\exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {q_s}}} = \exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}}}\\ {s = 1,2, \cdots ,n} \end{array} $ (18)

利用广义能量积分式(12,14) 解出${\dot q_1}$,记作

$ {{\dot q}_1} = {{\dot q}_1}\left( {{{q'}_r},{q_s}} \right) $ (19)

根据式(15,16),式(12) 可表示成

$ \exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}}{{\dot q}_1} - \exp \left( {{L^ * }} \right) = h $ (20)

其中${\dot q_1}$由式(19) 确定,将式(20) 分别对q′rqs求偏导数,有

$ \begin{array}{*{20}{c}} {\exp \left( {{L^ * }} \right)\left( {\frac{{\partial {L^ * }}}{{\partial {{q'}_r}}}\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {{q'}_r}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial {{\dot q}_1}\partial {{q'}_r}}}} \right){{\dot q}_1} - }\\ {\exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{q'}_r}}} = 0} \end{array} $ (21)
$ \begin{array}{*{20}{c}} {\exp \left( {{L^ * }} \right)\left( {\frac{{\partial {L^ * }}}{{\partial {q_s}}}\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {q_s}}} + } \right.}\\ {\left. {\frac{{{\partial ^2}{L^ * }}}{{\partial {{\dot q}_1}\partial {q_s}}}} \right){{\dot q}_1} - \exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {q_s}}} = 0} \end{array} $ (22)

$ \exp W\left( {{{q'}_r},{q_s}} \right) = \exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} $ (23)

将式(23) 对q′r, qs求偏微分,得

$ \begin{array}{*{20}{c}} {\exp \left( W \right) = \frac{{\partial W}}{{\partial {{q'}_r}}} = }\\ {\exp \left( {{L^ * }} \right)\left( {\frac{{\partial {L^ * }}}{{\partial {{q'}_r}}}\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {{q'}_r}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial {{\dot q}_1}\partial {{q'}_r}}}} \right)} \end{array} $ (24)
$ \begin{array}{*{20}{c}} {\exp \left( W \right) = \frac{{\partial W}}{{\partial {q_s}}} = }\\ {\exp \left( {{L^ * }} \right)\left( {\frac{{\partial {L^ * }}}{{\partial {q_s}}}\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {q_s}}} + \frac{{{\partial ^2}{L^ * }}}{{\partial {{\dot q}_1}\partial {q_s}}}} \right)} \end{array} $ (25)

由式(21,24),得

$ \exp \left( W \right) = \frac{{\partial W}}{{\partial {{q'}_r}}} = \frac{1}{{{{\dot q}_1}}}\exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{q'}_r}}} $ (26)

由式(22,25),得

$ \exp \left( W \right) = \frac{{\partial W}}{{\partial {q_s}}} = \frac{1}{{{{\dot q}_1}}}\exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {q_s}}} $ (27)

再根据式(17,18),得

$ \begin{array}{*{20}{c}} {\exp \left( W \right) = \frac{{\partial W}}{{\partial {{q'}_r}}} = \exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_r}}}}\\ {r = 2,3, \cdots ,n} \end{array} $ (28)
$ \begin{array}{*{20}{c}} {\exp \left( W \right) = \frac{{\partial W}}{{\partial {q_s}}}\frac{1}{{{{\dot q}_1}}}\exp \left( L \right)\frac{{\partial L}}{{\partial {q_s}}}}\\ {s = 1,2, \cdots ,n} \end{array} $ (29)

方程式(8) 可表示成

$ \exp \left( L \right) = \frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\exp \left( L \right)\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) = 0 $ (30)

将式(28,29) 代入式(30),有

$ \exp \left( W \right)\frac{{\partial W}}{{\partial {q_r}}}{{\dot q}_1} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\exp \left( W \right)\frac{{\partial W}}{{\partial {{q'}_r}}}} \right) = 0 $

$ {\exp \left( W \right)\frac{{\partial W}}{{\partial {q_r}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\left( {\exp \left( W \right)\frac{{\partial W}}{{\partial {{q'}_r}}}} \right) = 0} $ (31)

展开之后,得到

Lagrange函数的Whittaker方程

$ \begin{array}{*{20}{c}} {\exp \left( W \right)\left( {\frac{{\partial W}}{{\partial {q_r}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\frac{{\partial W}}{{\partial {{q'}_r}}} - \frac{{\partial W}}{{\partial {{q'}_r}}}\frac{{\partial W}}{{\partial {q_1}}}} \right) = 0}\\ {r = 2,3, \cdots ,n} \end{array} $ (32)

式中:W为关于q2, q3, …, q′n, q1, q2, …, qn的函数,而q1是相当于时间t的独立变量。Whittaker方程的形式等同于运动方程式(8),但方程个数变成n-1个,从而达到了降阶的目的。

1.4 算例

设基于指数Lagrange函数的作用量为

$ S = \int_{{t_1}}^{{t_2}} {{e^{ - {q_1}{q_2}}}\left( {\dot q_1^2 + \dot q_2^2} \right){\rm{d}}t} $ (33)

试求广义能量积分,并用其将方程降阶。

本问题中,经典的Lagrange函数为

$ L = \ln \left( {\dot q_1^2 + \dot q_2^2} \right) - {q_1}{q_2} $ (34)

由方程式(8) 得到

$ \begin{array}{l} 2{{\ddot q}_1} - \dot q_1^2{q_2} - 2{{\dot q}_1}{{\dot q}_2}{q_1} + \dot q_2^2{q_2} = 0\\ 2{{\ddot q}_2} - \dot q_2^2{q_1} - 2{{\dot q}_2}{{\dot q}_1}{q_2} + \dot q_1^2{q_1} = 0 \end{array} $ (35)

方程式(35) 为非线性微分方程组。

由式(34) 知

$ \frac{{\partial L}}{{\partial t}} = 0 $ (36)

因此存在能量积分

$ \left( {\dot q_1^2 + \dot q_2^2} \right){e^{ - {q_1}{q_2}}} = h $ (37)

${\dot q_2} = {\dot q_1}{q'_2}$代入式(37),有

$ \dot q_1^2\left( {1 + q_2^{'2}} \right){e^{ - {q_1}{q_2}}} = h $ (38)

解出${\dot q_1}$,得

$ {{\dot q}_1} = \sqrt {\frac{{h{e^{{q_1}{q_2}}}}}{{1 + q_2^{'2}}}} $ (39)

根据式(15) 构造expL*函数,有

$ \begin{array}{*{20}{c}} {\exp {L^ * } = \exp \left( {\ln \left( {\dot q_1^2\left( {1 + q_2^{'2}} \right)} \right) - {q_1}{q_2}} \right) = }\\ {\dot q_1^2\left( {1 + q_2^{'2}} \right){e^{ - {q_1}{q_2}}}} \end{array} $ (40)

构造expW函数

$ \begin{array}{l} \exp W = \exp \left( {{L^ * }} \right)\frac{{\partial {L^ * }}}{{\partial {{\dot q}_1}}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;2{{\dot q}_1}\left( {1 + q_2^{'2}} \right){e^{ - {q_1}{q_2}}} \end{array} $ (41)

将式(39) 代入式(41),整理后得

$ \exp W = 2\sqrt {h{e^{ - {q_1}{q_2}}}\left( {1 + q_2^{'2}} \right)} $ (42)

由方程式(32),得

$ \exp \left( W \right)\left( {\frac{{\partial W}}{{\partial {q_2}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\frac{{\partial W}}{{\partial {{q'}_2}}} - \frac{{\partial W}}{{\partial {{q'}_2}}}\frac{{\partial W}}{{\partial {q_1}}}} \right) = 0 $ (43)

$ {q_2}{{q'}_2} - {q_1}q_2^{'2} - {q_1} = 0 $ (44)
2 基于Lagrange函数幂函数的动力学系统的广义能量积分与Whittaker降阶法 2.1 Lagrange方程

假设系统的位形由n个广义坐标qs(s=1, 2, …, n)确定,则基于Lagrange函数幂函数的作用量定义为[15]

$ S = \int_{{t_1}}^{{t_2}} {{L^{1 + \gamma }}\left( {t,{q_s},{{\dot q}_s}} \right){\rm{d}}t} $ (45)

式中:L=L(t, qs, ${\dot q_s}$是经典意义下的Lagrange函数,γ为任意实数。与基于Lagrange函数幂函数的作用量(式(45))相应的Hamilton原理可写为

$ \delta S = 0 $ (46)

带有交换关系

$ d\delta {q_s} = \delta {\rm{d}}{q_s}\;\;\;\;\;s = 1,2, \cdots ,n $ (47)

以及边界条件

$ \begin{array}{*{20}{c}} {\delta {q_s}\left| {_{t = {t_1}}} \right. = \delta {q_s}\left| {_{t = {t_2}}} \right. = 0}\\ {s = 1,2, \cdots ,n} \end{array} $ (48)

因为

$ \begin{array}{*{20}{c}} {\delta {L^{1 + \gamma }} = \left( {1 + \gamma } \right){L^\gamma }\left( {\sum\limits_{s = 1}^n {\frac{{\partial L}}{{\partial {q_s}}}\delta {q_s}} + \sum\limits_{s = 1}^n {\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {{\dot q}_s}} } \right) = }\\ {\left( {1 + \gamma } \right){L^\gamma }\sum\limits_{s = 1}^n {\frac{{\partial L}}{{\partial {q_s}}}\delta {q_s}} + \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {1 + \gamma } \right){L^\gamma }\sum\limits_{s = 1}^n {\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {{\dot q}_s}} } \right] - }\\ {\left( {1 + \gamma } \right){L^\gamma }\sum\limits_{s = 1}^n {\left( {\frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) + \frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right]\delta {q_s}} } \end{array} $ (49)

将式(49) 代入式(46),有

$ \begin{array}{*{20}{c}} {\int_{{t_1}}^{{t_2}} {\left( {1 + \gamma } \right){L^\gamma }} \sum\limits_{s = 1}^n {\left[ {\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right]\delta {q_s}} \cdot }\\ {{\rm{d}}t + \left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {{\dot q}_s}}}\delta {q_s}\left| {_{{t_1}}^{{t_2}}} \right. = 0} \end{array} $ (50)

利用边界条件式(48),得到

$ \begin{array}{*{20}{c}} {\int_{{t_1}}^{{t_2}} {\left( {1 + \gamma } \right){L^\gamma }} \sum\limits_{s = 1}^n {\left[ {\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right]} \cdot }\\ {\delta {q_s}{\rm{d}}t = 0} \end{array} $ (51)

对于完整系统,δqs(s=1, 2, …, n)相互独立,由变分学基本引理[33],得到

$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){L^\gamma }\left( {\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right) = 0}\\ {s = 1,2, \cdots ,n} \end{array} $ (52)

γ≠-1时,有

$ \begin{array}{*{20}{c}} {\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}} = 0}\\ {s = 1,2, \cdots ,n} \end{array} $ (53)

方程式(53) 称为基于Lagrange函数幂函数的动力学系统的Lagrange方程[15]

γ=0,方程式(52) 为经典的Lagrange运动方程,即

$ \frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} = 0\;\;\;\;\;\;s = 1,2, \cdots ,n $ (54)
2.2 广义能量积分

下面计算系统的广义能量积分。因为

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {\sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - L} } \right){L^\gamma }} \right] = \\ \sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){L^\gamma }} \left( {{{\ddot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} + \frac{\gamma }{L}{{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + {{\dot q}_s}\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \\ \left( {1 + \gamma } \right){L^\gamma }\frac{{{\rm{d}}L}}{{{\rm{d}}t}} - \\ \sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){L^\gamma }} \left( {{{\ddot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}} + \frac{\gamma }{L}{{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + {{\dot q}_s}\frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) - \\ \left( {1 + \gamma } \right){L^\gamma }\left( {\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + \frac{{\partial L}}{{\partial {q_s}}}{{\dot q}_s} + \frac{{\partial L}}{{\partial {{\dot q}_s}}}{{\ddot q}_s}} \right) = \\ \sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){L^\gamma }} \cdot \\ \left[ {\left( {\frac{\gamma }{L}\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{\rm{d}}L}}{{{\rm{d}}t}} + \frac{{\rm{d}}}{{{\rm{d}}t}}\frac{{\partial L}}{{\partial {{\dot q}_s}}} - \frac{{\partial L}}{{\partial {q_s}}}} \right){{\dot q}_s} - \frac{{{\rm{d}}L}}{{{\rm{d}}t}}} \right] \end{array} $ (55)

由方程式(53,55) 知,如果Lagrange函数不显含时间t,即

$ \frac{{\partial L}}{{\partial t}} = 0 $ (56)

则沿着系统的动力学轨线有

$ \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {\sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} - L} \right){L^\gamma }} \right] = 0 $ (57)

于是系统存在广义能量积分

$ \left( {\sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){{\dot q}_s}\frac{{\partial L}}{{\partial {{\dot q}_s}}}} - L} \right){L^\gamma } = h = {\rm{const}} $ (58)
2.3 Whittaker降阶法

取广义坐标q1代替时间t,令

$ {{q'}_r} = \frac{{{\rm{d}}{q_r}}}{{{\rm{d}}{q_1}}}\;\;\;\;\;r = 2,3, \cdots ,n $ (59)

则有

$ {{\dot q}_r} = \frac{{{\rm{d}}{q_r}}}{{{\rm{d}}{q_1}}}\frac{{{\rm{d}}{q_1}}}{{{\rm{d}}t}} = {{q'}_r}{{\dot q}_1}\;\;\;\;\;r = 2,3, \cdots ,n $ (60)

$ {{\bar L}^{1 + \gamma }}\left( {{{\dot q}_1},{{q'}_r},{q_s}} \right) = {L^{1 + \gamma }}\left( {{{\dot q}_1},{{q'}_r}{{\dot q}_1},{q_s}} \right) $ (61)

将式(61) 对${\dot q_1}$, q′r, qs分别求偏导数,得

$ \begin{array}{l} \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} = \left( {1 + \gamma } \right){L^\gamma }\left( {\frac{{\partial L}}{{\partial {{\dot q}_1}}} + \sum\limits_{r - 2}^n {\frac{{\partial L}}{{\partial {{\dot q}_r}}}\frac{{\partial {{\dot q}_r}}}{{\partial {{\dot q}_1}}}} } \right) = \\ \left( {1 + \gamma } \right){L^\gamma }\left( {\frac{{\partial L}}{{\partial {{\dot q}_1}}} + \sum\limits_{r - 2}^n {\frac{{\partial L}}{{\partial {{\dot q}_r}}}\frac{{\partial {{\dot q}_r}}}{{\partial {{\dot q}_1}}}} } \right) = \\ \sum\limits_{s = 1}^n {\left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {{\dot q}_s}}}\frac{{{{\dot q}_s}}}{{{{\dot q}_1}}}} \end{array} $ (62)
$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{q'}_r}}} = \left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {{\dot q}_r}}}{{\dot q}_1}}\\ {r = 2,3, \cdots ,n} \end{array} $ (63)
$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {q_s}}} = \left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {q_s}}}}\\ {s = 1,2, \cdots ,n} \end{array} $ (64)

利用广义能量积分式(58,60) 解出${\dot q_1}$,记作

$ {{\dot q}_1} = {{\dot q}_1}\left( {{{q'}_r},{q_s}} \right) $ (65)

根据式(61,62),式(58) 可表示成

$ \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}}{{\dot q}_1} - {{\bar L}^{1 + \gamma }} = h $ (66)

式中${\dot q_1}$由式(65) 确定,将式(66) 分别对q′rqs求偏导数,有

$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\bar L}^\gamma }\left( {\frac{\gamma }{{\bar L}}\frac{{\partial \bar L}}{{\partial {{q'}_r}}}\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}\bar L}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_r}}}{{\partial {{q'}_1}}} + } \right.}\\ {\left. {\frac{{{\partial ^2}\bar L}}{{\partial {{\dot q}_1}\partial {{q'}_r}}}} \right){{\dot q}_1} - \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{q'}_r}}} = 0} \end{array} $ (67)
$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\bar L}^\gamma }\left( {\frac{\gamma }{{\bar L}}\frac{{\partial \bar L}}{{\partial {q_s}}}\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}\bar L}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {q_s}}} + } \right.}\\ {\left. {\frac{{{\partial ^2}\bar L}}{{\partial {{\dot q}_1}\partial {q_s}}}} \right){{\dot q}_1} - \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{q'}_s}}} = 0} \end{array} $ (68)

$ {{\tilde L}^{1 + \gamma }}\left( {{{q'}_r},{q_s}} \right) = \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} $ (69)

将式(69) 对q′r, qs求偏微分,得

$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {{q'}_r}}} = \left( {1 + \gamma } \right){{\bar L}^\gamma } \cdot }\\ {\left( {\frac{\gamma }{L}\frac{{\partial \bar L}}{{\partial {{q'}_r}}}\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}\bar L}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {{q'}_r}}} + \frac{{{\partial ^2}\bar L}}{{\partial {{\dot q}_1}\partial {{q'}_r}}}} \right)} \end{array} $ (70)
$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {q_s}}} = \left( {1 + \gamma } \right){{\bar L}^\gamma } \cdot }\\ {\left( {\frac{\gamma }{L}\frac{{\partial \bar L}}{{\partial {q_s}}}\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} + \frac{{{\partial ^2}\bar L}}{{\partial \dot q_1^2}}\frac{{\partial {{\dot q}_1}}}{{\partial {q_s}}} + \frac{{{\partial ^2}\bar L}}{{\partial {{\dot q}_1}\partial {q_s}}}} \right)} \end{array} $ (71)

由式(67,70),得

$ \left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {{q'}_r}}} = \frac{1}{{{{\dot q}_1}}}\left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{q'}_r}}} $ (72)

由式(68,71),得

$ \left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {q_s}}} = \frac{1}{{{{\dot q}_1}}}\left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {q_s}}} $ (73)

再根据式(63,64),得

$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {{q'}_r}}} = \left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {{q'}_r}}}}\\ {r = 2,3, \cdots ,n} \end{array} $ (74)
$ \begin{array}{*{20}{c}} {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {q_s}}} = \frac{1}{{{{\dot q}_1}}}\left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {q_s}}}}\\ {s = 1,2, \cdots ,n} \end{array} $ (75)

方程式(52) 可表示成

$ \left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {q_s}}} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\left( {1 + \gamma } \right){L^\gamma }\frac{{\partial L}}{{\partial {{\dot q}_s}}}} \right) = 0 $ (76)

将式(74,75) 代入式(76),有

$ \left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {q_r}}}{{\dot q}_1} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {{q'}_r}}}} \right) = 0 $

$ \left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {q_r}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\left( {\left( {1 + \gamma } \right){{\tilde L}^\gamma }\frac{{\partial \tilde L}}{{\partial {{q'}_r}}}} \right) = 0 $ (77)

整理之后,得到

$ \begin{array}{*{20}{c}} {\frac{{\partial \tilde L}}{{\partial {q_r}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\frac{{\partial \tilde L}}{{\partial {{q'}_r}}} - \frac{\gamma }{{\tilde L}}\frac{{\partial \tilde L}}{{\partial {{q'}_r}}}\frac{{{\rm{d}}\tilde L}}{{{\rm{d}}{q_1}}} = 0}\\ {r = 2,3, \cdots ,n} \end{array} $ (78)

方程式(78) 称为基于Lagrange函数幂函数的动力学系统的Whittaker方程。它与方程式(53) 相似,只是时间t的地位被广义坐标q1取代,但将原n个自由度问题降到了n-1个自由度问题。

2.4 算例

设基于Lagrange函数幂函数的作用量为

$ S = \int_{{t_1}}^{{t_2}} {{{\left[ {{{\dot q}_2}\left( {1 + q_1^2} \right) + {{\dot q}_1} + {q_2}} \right]}^{1 + \gamma }}{\rm{d}}t} $ (79)

试求广义能量积分,并用其将方程降阶。

本问题中,经典的Lagrange函数为

$ L = {{\dot q}_2}\left( {1 + q_1^2} \right) + {{\dot q}_1} + {q_2} $ (80)

若取γ=1,由方程式(53) 得到

$ \begin{array}{*{20}{c}} {2{{\dot q}_2}{q_1}\left( {{{\dot q}_2}\left( {1 + q_1^2} \right) + {q_2}} \right) - }\\ {\left( {{{\ddot q}_2}\left( {1 + q_1^2} \right) + {{\ddot q}_1} + {{\dot q}_2}} \right) = 0}\\ {\left( {1 - 2{{\dot q}_1}{q_1}} \right)\left( {{{\dot q}_2}\left( {1 + q_1^2} \right) + {{\dot q}_1} + {q_2}} \right) - }\\ {\left( {1 + q_1^2} \right)\left( {{{\ddot q}_2}\left( {1 + q_1^2} \right) + 2{{\dot q}_2}{{\dot q}_1}{q_1} + {{\ddot q}_1} + {{\dot q}_2}} \right) = 0} \end{array} $ (81)

运动方程式(81) 为非线性微分方程组。

由式(80) 知

$ \frac{{\partial L}}{{\partial t}} = 0 $ (82)

则存在广义能量积分

$ {\left[ {{{\dot q}_2}\left( {1 + q_1^2} \right) + {{\dot q}_1}} \right]^2} - q_2^2 = h $ (83)

${\dot q_2} = {\dot q_1}{q'_2}$代入式(83),有

$ \dot q_1^2{\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + 1} \right]^2} - q_2^2 = h $ (84)

解出${\dot q_1}$,得

$ {{\dot q}_1} = \frac{{\sqrt {h + q_2^2} }}{{{{q'}_2}\left( {1 + q_1^2} \right) + 1}} $ (85)

根据式(61) 构造函数,有

$ \begin{array}{*{20}{c}} {\bar L = {{\dot q}_1}{{q'}_2}\left( {1 + q_1^2} \right) + {{\dot q}_1} + {q_2} = }\\ {{{\dot q}_1}\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + 1} \right] + {q_2}} \end{array} $ (86)

构造${\tilde L^2}$函数

$ \begin{array}{*{20}{c}} {{{\tilde L}^2} = \left( {1 + \gamma } \right){{\bar L}^\gamma }\frac{{\partial \bar L}}{{\partial {{\dot q}_1}}} = }\\ {2\left\{ \begin{array}{l} {{\dot q}_1}\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + } \right.\\ \;\;\;\;\left. 1 \right] + {q_2} \end{array} \right\}\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + 1} \right]} \end{array} $ (87)

将式(85) 代入式(87),整理后得

$ {{\tilde L}^2} = 2\left( {\sqrt {h + q_2^2} + {q_2}} \right)\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + 1} \right] $ (88)

由方程式(78),得

$ \frac{{\partial \bar L}}{{\partial {q_2}}} - \frac{{\rm{d}}}{{{\rm{d}}{q_1}}}\frac{{\partial \tilde L}}{{\partial {{q'}_2}}} - \frac{1}{{\tilde L}}\frac{{\partial \tilde L}}{{\partial {{q'}_2}}}\frac{{{\rm{d}}\tilde L}}{{{\rm{d}}{q_1}}} = 0 $ (89)

$ \begin{array}{*{20}{c}} {\left[ {{{q'}_2}\left( {1 + q_1^2} \right) + 1} \right]\left( {1 + \frac{{2{q_2}}}{{\sqrt {h + q_2^2} }}} \right) - }\\ {2{q_1}\left( {\sqrt {h + q_2^2} + {q_2}} \right) = 0} \end{array} $ (90)
3 结束语

利用非标准Lagrange函数可以解决非线性问题等,算例中通过Whittaker降阶法分别将方程式(35,81) 降阶为方程式(44,90),显示了基于非标准Lagrange函数的Whittaker降阶法在非线性动力学中的优势。文章研究了基于两类非标准Lagrange函数的动力学系统的广义能量积分与降阶问题,利用系统的Lagrange方程得到了广义能量积分存在的约束条件,并将著名的Whittaker降阶法推广到基于非标准Lagrange函数的动力学系统,得到了基于非标准Lagrange函数的Whittaker方程。本文的方法具有普遍意义,可进一步推广到其他非标准Lagrange函数系统。同时,也可研究基于非标准Lagrange函数的循环积分及Routh降阶法。

参考文献
[1] ARNOLD V I. Mathematical methods of classical mechanics[M]. New York: Springer, 1978.
[2] EL-NABULSI R A. Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional[J]. Indian Journal of Physics, 2013, 87(5): 465–470. DOI:10.1007/s12648-012-0237-5
[3] ALEKSEEV A I, ARBUZOV B A. Classical Yang-Mills field theory with nonstandard Lagrangians[J]. Theoretical and Mathematical Physics, 1984, 59(1): 372–378. DOI:10.1007/BF01028515
[4] GAROUSI M R, SAMI M, TSUJIKAWA S. Constraints on Dirac-Born-Infeld type dark energy models from varying alpha[J]. Physical Review D, 2005, 71(8): 083005. DOI:10.1103/PhysRevD.71.083005
[5] COPELAND E J, GAROUSI M R, SAMI M, et al. What is needed of a tachyon if it is to be the dark energy?[J]. Physical Review D, 2005, 71(4): 043003. DOI:10.1103/PhysRevD.71.043003
[6] CARIENA J F, RANADA M F, SANTANDER M. Lagrangian formalism for nonlinear second-order Riccati systems: One-dimensional integrability and two-dimensional superintegrability[J]. Journal of Mathematical Physics, 2005, 46(6): 062703–062721. DOI:10.1063/1.1920287
[7] CHANDRASEKAR V K, PANDEY S N, SENTHILVELAN M, et al. A simple and unified approach to identify integrable nonlinear oscillators and systems[J]. Journal of Mathematical Physics, 2006, 47(2): 023508–023545. DOI:10.1063/1.2171520
[8] CHANDRASEKAR V K, SENTHILVELAN M, LAKSHMANAN M. On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator[J]. Journal of Mathematical Physics, 2007, 48(3): 032701. DOI:10.1063/1.2711375
[9] MUSIELAK Z E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(5): 055205–055222. DOI:10.1088/1751-8113/41/5/055205
[10] MUSIELAK Z E. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems[J]. Chaos, Solitons & Fractals, 2009, 42(5): 2645–2652.
[11] TYURIN N A. Nonstandard Lagrangian tori and pseudotoric structures[J]. Theoretical and Mathematical Physics, 2012, 171(2): 700–703. DOI:10.1007/s11232-012-0067-9
[12] BARTOSIEWICZ Z, MARTINS N, TORRES D F M. The second Euler-Lagrange equation of variational calculus on time scales[J]. European Journal of Control, 2011, 17(1): 9–18. DOI:10.3166/ejc.17.9-18
[13] EL-NABULSI R A. Quantum field theory from an exponential action functional[J]. Indian Journal of Physics, 2013, 87(4): 379–383. DOI:10.1007/s12648-012-0187-y
[14] EL-NABULSI R A. Generalizations of the Klein-Gordon and the Dirac equations from non-standard Lagrangians[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2013, 83(4): 383–387. DOI:10.1007/s40010-013-0094-4
[15] EL-NABULSI R A. Non-linear dynamics with non-standard Lagrangians[J]. Qualitative Theory of dynamical Systems, 2013, 12(2): 273–291. DOI:10.1007/s12346-012-0074-0
[16] DIMITRIJEVIC D D, MILOSEVIC M. About non standard Lagrangians in cosmology [C]//Proceedings of the Physics Conference TIM-11. [S.l.]: AIP Publishing, 2012, 1472(1): 41-46.
[17] EL-NABULSI R A. Nonstandard Lagrangian cosmology[J]. Journal of Theoretical and Applied Physics, 2013, 7(1): 1–12. DOI:10.1186/2251-7235-7-1
[18] EL-NABULSI R A. Non-standard fractional Lagrangians[J]. Nonlinear Dynamics, 2013, 74(1/2): 381–394.
[19] EL-NABULSI R A. Non-standard Lagrangians in rotational dynamics and the modified Navier-Stokes equation[J]. Nonlinear Dynamics, 2014, 79(3): 2055–2068.
[20] EL-NABULSI R A. Non-standard non-local-in-time Lagrangians in classical mechanics[J]. Qualitative Theory of Dynamical Systems, 2014, 13(1): 149–160. DOI:10.1007/s12346-014-0110-3
[21] RAMI E N A, SOULATI T, REZAZADEH H. Non-standard complex Lagrangian dynamics[J]. Journal of Advanced Research in Dynamical & Control Systems, 2013, 5(1): 50–62.
[22] CIESLINSKI J L, NIKICIUK T. A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(17): 175205–175220. DOI:10.1088/1751-8113/43/17/175205
[23] 刘端. 非完整系统的Routh方法[J]. 科学通报, 1988, 22: 4–8.
LIU Duan. Routh method of reduction of nonholonomic systems[J]. Chinese Science Bulletin, 1988, 22: 4–8.
[24] LUO S K. Cyclic integrals and reduction of rotational relativistic Birkhoffian system[J]. Chinese Physics, 2003, 12(2): 140–143. DOI:10.1088/1009-1963/12/2/303
[25] 张毅. Birkhoff系统约化的Routh方法[J]. 物理学报, 2008, 57(9): 5374–5377. DOI:10.7498/aps.57.5374
ZHANG Yi. Routh method of reduction of Birkhoffian systems[J]. Acta Physica Sinica, 2008, 57(9): 5374–5377. DOI:10.7498/aps.57.5374
[26] 李彦敏, 梅凤翔. 广义Birkhoff系统的循环积分及降阶法[J]. 北京理工大学学报, 2010, 30(5): 505–507.
LI Yanmin, MEI Fengxiang. Cyclic integral and reduction of generalized Birkhoff system[J]. Transactions of Beijing Institute of Technology, 2010, 30(5): 505–507.
[27] LUO S K. Generalized energy integral and reduction of rotational relativistic Birkhoffian system[J]. Chinese Physics, 2002, 11(11): 1097–1100. DOI:10.1088/1009-1963/11/11/301
[28] ZHENG G, CHEN X, MEI F. First integrals and reduction of the Birkhoffian system[J]. Journal Beijing Institute of Technology English Edition, 2001, 10(1): 17–22.
[29] LUO S K, HUANG F J, LU Y B. Whittaker order reduction method of relativistic Birkhoffian systems[J]. Communications in Theoretical Physics, 2004, 42(6): 817–820. DOI:10.1088/0253-6102/42/6/817
[30] 梅凤翔. 非完整系统力学基础[M]. 北京: 北京工业学院出版社, 1985.
MEI Fengxiang. Foundations of mechanics of nonholonomic systems[M]. Beijing: Beijing Institute of Technology Press, 1985.
[31] 梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013.
MEI Fengxiang. Analytical mechanics[M]. Beijing: Beijing Institute of Technology Press, 2013.
[32] WHITTAKER E T. A treatise on the analytical dynamics of particles any rigid bodies[M]. Cambridge: Cambridge University Press, 1904.
[33] GOLDSTEIN H, POOLE C, SAFKO J. Classical mechanics[M]. The third edition. Beijing: Higher Education Press,, 2005.