中文核心期刊
中国科技论文统计源期刊
国际刊号:1005-2615
国内刊号:32-1429/V
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式ʽ
  • 主管:工业和信息化部
  • 主办:南京航空航天大学
  • 国际刊号:1005-2615
  • 国内刊号:32-1429/V
  • 地址:南京市御道街29号
  • 电话:025-84892726
  • 传真:025-84892726
  • E-mail:tnc01@nuaa.edu.cn
  • 邮编:210016
李辉,汝卓霖,邹正平,周双钊.微小尺度通道内超临界甲烷传热特性研究[J].南京航空航天大学学报,2021,53(4):513-520
微小尺度通道内超临界甲烷传热特性研究
Investigation on Heat Transfer Characteristic of Supercritical Methane in a Microtube
投稿时间:2021-05-23  修订日期:2021-07-07
DOI:10.16356/j.1005-2615.2021.04.003
中文关键词:  传热  超临界流体  甲烷  微细圆管
英文关键词:heat transfer  supercritical fluids  methane  microtube
基金项目:先进航空动力创新工作站(依托中国航空发动机研究院)(HKCX2019-01-004)资助项目。
作者单位邮编
李辉 北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室北京 100191
中国航空发动机研究院先进航空动力创新站北京 101304 
101304
汝卓霖 北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室北京 100191
中国航空发动机研究院先进航空动力创新站北京 101304 
101304
邹正平 北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室北京 100191
中国航空发动机研究院先进航空动力创新站北京 101304
北京航空航天大学航空发动机研究院北京 100191 
100191
周双钊 北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室北京 100191
中国航空发动机研究院先进航空动力创新站北京 101304 
101304
摘要点击次数: 154
全文下载次数: 208
中文摘要:
      研究微小尺度通道内超临界甲烷的传热特性对于碳氢燃料预冷器精细化设计具有重要意义。本文利用实验方法探究了热流密度、质量流量以及系统压力等边界条件对微细圆管内超临界甲烷传热特性的影响规律,并结合数值方法分析了跨临界传热强化的主要原因。结果表明:在实验工况范围内,当超临界甲烷温度接近拟临界温度时均产生了不同程度的传热强化现象,且质量流量和系统压力变化对换热系数峰值的影响更大。传热强化产生的原因主要有两点,一是在拟临界点附近较大的径向密度梯度导致了浮升力的产生,进而在浮升力和重力的共同作用下生成二次流,增强了流体掺混;二是此处的超临界甲烷定压比热急剧增加,增强了自身的载热能力。最终,根据实验结果提出了适用于微细圆管内超临界甲烷对流换热预测的经验关联式,以期为碳氢燃料预冷器精细化设计提供模型依据。
英文摘要:
      Heat transfer research of supercritical methane in the micro-channel is of great significance to the refined design of hydrocarbon fuel precoolers. The effects of several boundary conditions, including heat flux, mass flow rate and system pressure, on the heat transfer characteristics of the supercritical methane in a horizontal microtube were experimentally studied. Besides, the enhanced heat transfer mechanism of supercritical flow was also numerically clarified. The results show that heat transfer enhancements are produced when the temperature of supercritical methane is close to the pseudo-critical temperature, and the mass flow rate and system pressure have a greater impact on the maximum heat transfer coefficient. There are two main reasons for heat transfer enhancement. One is that the large radial density gradient near the pseudo-critical point leads to the generation of buoyancy, thereby the secondary flow is generated under the combined action of gravity and buoyancy, which enhances the fluid mixing. The other is that the specific heat of supercritical methane increases sharply, resulting in the greater capacity to absorb thermal energy. Finally, an empirical correlation for the prediction of supercritical methane heat transfer in microtubes is proposed, which provides support for the refined design of hydrocarbon fuel precoolers.
[HTML]  查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《南京航空航天大学学报》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892726      传真:025-84892726       E-mail:tnc01@nuaa.edu.cn

您是本站第3733654位访问者 本站今日一共被访问2175

技术支持:北京勤云科技发展有限公司

敬请关注《南航学报》官方微信