首页  |  期刊简介  |  编委会  |  稿件评审流程  |  学术道德规范  |  论文检索  |  期刊订阅  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1005-2615
国内刊号:32-1429/V
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式ʽ
  • 主管:工业和信息化部
  • 主办:南京航空航天大学
  • 国际刊号:1005-2615
  • 国内刊号:32-1429/V
  • 地址:南京市御道街29号
  • 电话:025-84892726
  • 传真:025-84892726
  • E-mail:tnc01@nuaa.edu.cn
  • 邮编:210016
钱泓江,董秀成,徐椰烃,蒋金洋,陈桂芳.基于神经网络的荧光油膜厚度与灰度研究[J].南京航空航天大学学报,2021,53(3):470-476
基于神经网络的荧光油膜厚度与灰度研究
Fluorescence Oil Film Thickness and Gray Level Identification Based on Neural Network
投稿时间:2020-08-16  修订日期:2020-12-12
DOI:10.16356/j.1005-2615.2021.03.020
中文关键词:  神经网络  荧光油膜  数据预测  参数辨识
英文关键词:neural network  fluorescent oil film  data forecasting  system identification
基金项目:国家自然科学基金(11872069)资助项目;四川省科技厅重点(2018JY0463)资助项目;教育部“春晖计划”科研(Z2017076)资助项目;四川省高校科研创新团队——机器视觉与智能控制(18TD0024)资助项目;四威高科-西华大学产学研联合实验室(2016-YF04-00044-JH)资助项目;“西华杯”大学生创新创业(2020140)资助项目。
作者单位邮编
钱泓江 西华大学电气与电子信息学院成都 610039 610039
董秀成 西华大学电气与电子信息学院成都 610039 610039
徐椰烃 西华大学电气与电子信息学院成都 610039 610039
蒋金洋 西华大学电气与电子信息学院成都 610039 610039
陈桂芳 西华大学电气与电子信息学院成都 610039 610039
摘要点击次数: 254
全文下载次数: 394
中文摘要:
      在全局摩阻测量中,薄油膜技术可以很好地表征表面摩阻的分布情况。用特定波长的紫外线照射添加了荧光显色分子的不同厚度的油膜,油膜将发出不同的亮度。利用该原理通过检测受激发的荧光油膜灰度值可解算出相应油膜的厚度。本次采用BP神经网络及极限学习机(Extreme learning machine, ELM)神经网络搭建模型完成了荧光油膜厚度与灰度关系的预测,运用Hopfield神经网络完成了相应参数的辨识。实验表明,ELM神经网络模型、BP神经网络模型及插值法模型的预测误差分别为5.150%、5.485%和5.935%。通过Hopfield神经网络辨识,光源功率、光距和曝光系数等影响因素的参数误差率控制在1%左右,达到实际工程运用的要求。与传统插值法相比,通过神经网络可获得更高的精度,为荧光油膜灰度与厚度研究提供了一种可行的方法。
英文摘要:
      In global friction measurement, thin oil film technique can well represent the distribution of surface friction. Irradiated with ultraviolet light of a specific wavelength, the oil film with different thickness of the fluorescent color molecules will emit different brightness. Using this principle, the thickness of the oil film can be calculated by detecting the gray value of the excited fluorescent oil film.In this paper, BP neural network and extreme learning machine (ELM) neural network are used to build models to complete the prediction of the relationship between the fluorescence oil film thickness and gray level, and Hopfield neural network is used to complete the identification of the corresponding parameters. The experimental results show that the prediction errors of ELM neural network model, BP neural network model and interpolation model are 5.150%, 5.485% and 5.935%, respectively. Through Hopfield neural network identification, the parameter error rates of the influence factors such as light source power, optical distance and exposure coefficient are controlled at about 1%, which meets the requirements of practical engineering application. Compared with the traditional interpolation method, the higher precision can be obtained by using the neural network, which provides a feasible method for the study of the gray and thickness of the fluorescent oil film.
[HTML]  查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《南京航空航天大学学报》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892726      传真:025-84892726       E-mail:tnc01@nuaa.edu.cn

您是本站第3634515位访问者 本站今日一共被访问696

技术支持:北京勤云科技发展有限公司

敬请关注《南航学报》官方微信