DOI:10.16356/j.1005-2615.2021.01.009

激光选区熔化成形LaB。增强316L不锈钢的组织 及力学性能

蒋佳斌¹,谢德巧²,周 凯¹,肖 猛³,田宗军¹,沈理达¹,赵剑峰¹ (1.南京航空航天大学机电学院,南京210016;2.南京航空航天大学能源与动力学院,南京210016; 3.南京先进激光技术研究院,南京210046)

摘要:为进一步提高激光选区熔化成形316L不锈钢制件的力学性能,在316L不锈钢粉末中添加LaB。稀土材料, 分析其对成形样件显微组织、显微硬度、拉伸性能和耐磨性能的影响。结果表明:微量添加LaB。的316L不锈钢 材料其激光选区熔化(Selective laser melting, SLM)成形工艺窗口发生了偏移,在获取同等致密度制件的条件下 可进一步降低激光功率密度;添加的LaB。稀土材料改变了316L材料熔池的熔凝行为,致平均结晶晶粒细化,显 微硬度、拉伸强度、屈服强度和耐磨性能得到提高。

关键词:激光选区熔化;六硼化镧;不锈钢;显微组织;力学性能

中图分类号:TN142 **文献标志码:**A **文章编号:**1005-2615(2021)01-0085-08

Microstructure and Mechanical Properties of 316L Stainless Steel Reinforced by Lanthanum Hexaborate Through Selective Laser Melting

JIANG Jiabin¹, XIE Deqiao², ZHOU Kai¹, XIAO Meng³, TIAN Zongjun¹, SHEN Lida¹, ZHAO Jianfeng¹

(1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
 College of Energy and Power, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
 Nanjing Institute of Advanced Laser Technology, Nanjing 210046, China)

Abstract: In order to further improve the mechanical properties of 316L stainless steel parts formed by laser selective melting, 316L stainless steel powder was added with LaB_6 rare earth material, and its influence on the microstructure, microhardness, tensile properties and wear resistance of the formed samples was analyzed. The results show that: The selective laser melting (SLM) forming process window of 316L stainless steel with a small amount of LaB_6 added is offset, and the laser power density could be further reduced when the same dense parts are obtained; the added LaB_6 rare earth material changes the melting behavior of 316L material molten pool, refines the average crystal grains, and improves the microhardness, tensile strength, yield strength and wear resistance.

Key words: selective laser melting (SLM) ; lanthanum hexaborate; stainless steel; microstructure; mechanical property

基金项目:国家重点研发计划(2018YFB1105400,2018YFB1105801)资助项目;国家自然科学基金(51475238,U1537105)资助项目;江苏省重点研发计划(BE2019002)资助项目;南京航空航天大学研究生教育教学改革研究项目 "3D打印+仿生机器人"研究生协同培养探索"(2018YJXGG11)资助项目。

收稿日期:2020-03-16;修订日期:2020-04-16

通信作者:赵剑峰,男,教授,博士生导师,E-mail:zhaojf@nuaa.edu.cn。

引用格式:蒋佳斌,谢德巧,周凯,等.激光选区熔化成形LaB。增强316L不锈钢的组织及力学性能[J].南京航空航天大 学学报,2021,53(1):85-92. JIANG Jiabin, XIE Deqiao, ZHOU Kai, et al. Microstructure and mechanical properties of 316L stainless steel reinforced by lanthanum hexaborate through selective laser melting[J]. Journal of Nanjing University of Aeronautics & Astronautics,2021,53(1):85-92.

激光选区熔化(Selective laser melting, SLM) 技术能够制备复杂结构零件,且其材料利用率高并 可替代昂贵的模具^[1-7],在航空航天、汽车、生物医 疗以及材料科学等领域已得到应用^[8-16]。但是,由 于不锈钢较低的表面硬度和摩擦磨损性能,限制了 其进一步的应用。为增强 SLM 成形件的力学性 能,现有的研究思路很多,如通过热处理或热等静 压处理提升材料性能,或通过增加陶瓷颗粒材料以 形成金属基复合材料,使得金属凝固时形核率提 高,凝固后陶瓷颗粒成为增强相。唐武等^[17]通过添 加氧化铝陶瓷颗粒提高了不锈钢耐腐蚀性能, Almangour等^[18]通过碳化钛颗粒增强不锈钢来提 高不锈钢耐磨性能。

稀土材料具有特殊的物理化学性能,在钢冶炼 过程中不仅可以固溶到钢中产生微合金化的作用, 还可以与钢中的氧(O)、硫(S)、磷(P)等有害元素反 应,达到净化晶界和变形夹杂的目的^[19]。稀土化合 物的固体颗粒作为非均质形核位点,可以在晶体结 构的界面上分离出来,从而阻碍组织的生长,因此 加入稀土元素能够细化钢晶粒^[20]。稀土金属的加 入使得晶体结构间的距离明显减小,促进了低熔点 枝晶间液膜的凝固。国内外研究人员研究了钢的 冶炼过程中不同稀土元素添加对钢的影响,并探讨 了相关的作用规律和机理^[21-23]。Cai等^[24]发现在 202不锈钢中添加 0.016% 的稀土 Ce 可细化晶粒, 提高钢的塑性、韧性。郝柳等[25]发现稀土镧的添加 会使高强钢中第二相多分布于晶界,增强第二相对 晶界的钉轧作用。李亚波等[26]研究表明,添加稀土 后,由于稀土元素的原子半径大,易在晶界处产生 偏聚现象,并能起到钉扎、拖拽晶界的作用,从而阻 止晶粒长大来达到细化晶粒的目的。研究表明,熔 点高的稀土金属加入钢液后能够形成以Ce₂O₃为 主的非均相成核位点,从而减小晶粒的尺寸[27]。

在选区激光熔化过程中,稀土作为增强相对不 锈钢等材料的研究鲜见报道。而在17种稀土元素 中,镧元素最为活泼,且在钢冶炼过程中,镧的添加 也最为常见,因此本文选用镧元素,而镧元素的化 合物中,以其硼化物化学性质最为稳定,在常温下 具有良好的化学稳定性。而且LaB。硬度高、热膨 胀系数低,因此LaB。是制备不锈钢复合材料较为 理想的增强相,有望融合两者的优异性能,从而得 到综合性能较好的新型复合材料。本文研究LaB。 对 316L不锈钢 SLM 成形样件的显微组织及力学 性能的影响。

1 试 验

1.1 试验材料

试验所用材料为316L不锈钢和LaB。粉末。 所用 316L 粉末采用气相雾化法制成,中位粒径 D50为30 µm,显微形貌如图1(a)所示,化学组成如 表1所示;LaB₆粉末D50为200 nm,显微形貌如图 1(b)所示。参照钢的冶炼中稀土元素的用量,本试 验中掺杂 LaB₆与 316L 不锈钢的质量比为 0.1%。 预先采用立式行星球磨机对粉末进行球磨,从而制 备出均匀的混合材料。为避免混合粉末氧化,在球 磨之前先对罐体抽真空并充氩气进行保护。球磨 参数为:球料质量比1:1.5,球磨转速120 r/min,球 磨时间480 min。球磨过程中为了使粉末混合均匀 并避免罐内温度过高,采用正转25 min、反转 25 min、冷却 10 min 的球磨方法。球磨完成后, LaB₆/316L不锈钢粉末的显微形貌如图 1(c)所示。 从图中可以看出,亚微米级的LaB。颗粒均匀地附 着在不锈钢颗粒表面。

表1 316L不锈钢粉末的化学成分

Table 1 Chemical composition of 316L stainless steel

	powo	ler						%
元素	С	Mn	Si	Р	Cr	Ni	Мо	Fe
质量分数	0.024	1.700	0.470	0.042	16.49	10.51	2.700	余量

1.2 试验设备及方法

本研究采用的成形设备为所在课题组合作研制的NCL-M2120选区激光熔化成形设备。SLM 成形过程中,铺粉装置将一定厚度的粉末均匀铺在 成形基板上,激光束根据样件的二维切片数据选择 性地扫描粉层的某一区域,以形成样件的1个二维

截面,随后成形缸下降1个层厚的高度,送粉缸上 升相同的高度,铺粉装置再次铺粉。重复上述过 程,直至样件成形完毕。

为避免SLM成形过程中熔池内的液态金属氧 化或氮化,成形舱内填充氩气,氧含量降低至4× 10⁻⁴以下。SLM成形试验前先将不锈钢基板由室 温(25℃)加热至140℃进行预热处理,以降低成形 过程中零件的热应力和变形。扫描路径呈"之"字 形,相邻层间旋转67°。成形后的样件如图1(d)所 示,样件的三维尺寸为8 mm×8 mm×5 mm。以 激光功率范围为40~200 W、扫描速度范围为 0.2~2 m/s开展变因素工艺试验。316L不锈钢粉 末的成分见表1。

1.3 样件表征

利用电火花线切割将 SLM 成形后的样件从基 板上分离。选取成形完整的试样,利用阿基米德排 水法测量成形块体的致密度。将成形样件打磨、抛 光以及腐蚀,以获得金相分析试样,腐蚀溶液采用 K2试剂, 配比为4gCuSO4: 20 mL HC1: 100 mL C₂H₆O,腐蚀时间为30~50 s。显微组织观察利用 Olympus GX41 金相显微镜和日立 S-4800 扫描电 子显微镜,并利用电子背散射衍射(Electron backscattered diffraction, EBSD)技术观察组织结构、测 量晶粒尺寸。X射线衍射检测采用日本理学公司 生产的 D/max 2500VL/PC 型衍射仪。电感耦合 等离子体测试采用安捷伦公司生产的 ICP-AES 730设备,参数为酸溶溶解,定容体积为25mL,取 样质量为0.0906g,稀释倍率系数为1。显微硬度 测试采用HXS-1000数字式智能显微硬度计测量, 载荷为200g,加载时间为20s。室温拉伸试验采 用Zwick/Roell Z050电子式万能试验机,横梁位移 速率 0.5 mm/min。摩擦磨损试验采用 HSR-2M 高 速往复摩擦磨损试验机进行,载荷为 3 N,转速为 300 r/min,摩擦时间为 15 min。摩擦磨损试验需 要用到对磨材料,本试验用的材料为 GCr15 钢球, 直径为 4 mm。摩擦磨损试验后利用 S-4800 扫描 电子显微镜观察样件的磨损表面。

2 结果与讨论

2.1 成形工艺窗口

由于SLM成形是通过高能激光束照射使粉末 材料熔化,因此SLM的成形质量与激光能量输入 密切相关,而粉末材料吸收的能量大小主要取决于 激光功率P和激光扫描速度v,故可通过激光线能 量密度η来综合考虑P和v两者的影响。而η=P/ v,故当激光线能量密度η过低时,粉末材料所直接 吸收的能量偏少,使得粉末材料在熔池中的液相流 动性能变差,导致其产生未完全熔化的颗粒和孔隙 等功能性缺陷,降低样件成形质量。然而,当激光 线能量密度η偏高时,粉末材料所直接吸收的能量 较高,可能会产生球化效应、液体飞溅甚至过烧的 现象,影响成形样件的性能。

成形件致密度是衡量 SLM 制件质量的一个重 要指标^[28]。为了找寻制件最佳的组织和性能,通常 通过致密度的大小来判断 SLM 制件的质量。LaB。 添加前后 316L 不锈钢 SLM 成形件的致密度随激 光功率、扫描速度工艺参数变化的结果分别见表 2 和表 3。可以看到,添加 LaB。后,316L 不锈钢成形 件致密度高于 95% 的工艺窗口发生了偏移。在保 持较高致密度的情况下,LaB。添加可采用较低的 激光功率密度。

			致密度/%		
′扣捆迷度/(m•s)	100 W	120 W	140 W	160 W	180 W
0.6	87.68	88.54	90.97	93.21	95.42
0.8	86.13	88.24	93.27	96.65	98.23
1.0	90.02	93.37	96.62	97.09	99.02
1.2	89.18	91.20	92.96	95.28	97.76
1.4	88.20	89.28	91.25	93.07	95.20
1.6	86.62	88.31	90.27	91.33	93.37

表 2 SLM 成形 316L 不锈钢的致密度 Table 2 Densification of 316L stainless steel formed by SLM

一般而言,成形件致密度与激光熔化时的熔池 非稳态流动密切相关^[29],熔池的非稳态流动越剧 烈,SLM成形件的致密度越低。本试验中尽管 LaB₆的添加量质量比仅为0.1%,但是LaB₆仍对熔 池的流动行为产生了一定的影响。这一方面可能 是在熔池流动过程中,稀土材料与不锈钢粉末材料 中的氧等元素反应,生成镧氧化物等新相;另一方 面在熔池凝固时,稀土化合物的固体颗粒作为非均 质形核位点,从而阻碍晶粒的生长^[30]。

本文后续性能测试用 316L 不锈钢和 LaB₆/ 316L 不锈钢成形件样件分别选取表 2 和表 3 中致 密度最高的两组工艺参数制备(表4)。

表 3 SLM 成形 LaB₆/316L 样件的致密度 Table 3 Densification of LaB₆/316L samples formed by SLM

	致密度/%						
扫描速度/(m•s ⁻)	100 W	120 W	140 W	160 W	180 W		
0.6	89.75	91.26	92.19	90.53	87.56		
0.8	91.50	93.95	96.42	94.21	90.25		
1.0	94.61	96.98	98.71	97.87	93.20		
1.2	93.06	96.82	95.62	92.15	89.70		
1.4	92.70	94.30	94.52	91.01	89.30		
1.6	92.30	93.35	92.67	89.70	88.48		

表4 SLM成形工艺参数

Table 4 SLM for	ming process p	arameters
制件	316L	LaB ₆ /316L
层厚/μm	30	30
扫描间距/μm	50	50
激光功率/W	180	140
扫描速度/(m•s ⁻¹)	1	1

2.2 物相分析

对 316L 样件和 LaB₆/316L 样件进行 XRD 测 试(见图 2),两者最高衍射峰均为γ-奥氏体(111) (根据标准卡片 PDF #89-2762)。相较于 316L 样 件,LaB₆/316L 样件的最高衍射峰强度有所增加, 宽度有所变大,这意味着 LaB₆/316L 样件内部存在 相对细小的晶粒和(或)显微组织,表明 LaB₆的添加 改变了 SLM 的凝固过程,并导致结晶晶粒细化。 在 SLM 过程中,随着熔池温度的急剧升高,LaB₆ 中的 La元素和 B 元素向金属(Fe、Mn、Cr)的晶格 中扩散^[29-31],并与熔池中的氧进行反应,对不锈钢 组织起到细化作用^[32]。

2.3 显微组织分析

因添加的LaB₆质量较少,用XRD或者EDS检 测均未观察到La元素,进而采用电感耦合等离子体(Inductively coupled plasma-atomic emission spectrometry, ICP-AES)法测试。测量La元素时仪器 读数为2.8230 mg/L,LaB₆/316L混合粉末中含有 重量百分比为0.1%的 LaB_6 ,其中La元素占比约为 6.817×10^{-4} 。表明SLM制备的样件中含有 LaB_6 ,且 $La元素无明显损失^{[33]}$ 。

图 3 为成形样件的显微组织图,316L 样件中 奥氏体组织较粗大(图 3(a)),而 LaB₆/316L 样件内 部组织有了明显的细化(图 3(b))。

利用 EBSD 仪对样件进行进一步观测,以定量 测试组织中晶粒尺寸,见图 3(c)和(d),采用 HKL Channel EBSD 分析系统处理得到平均晶粒尺寸, 可得 316L 样件平均晶粒尺寸为 8.224 2 μm,LaB₆/ 316L 试样平均晶粒尺寸为 6.058 8 μm。由此可 见,添加 LaB₆后,316L 成形试样的晶粒明显细化。

2.4 显微硬度

316L样件和LaB₆/316L样件沿成形方向上的 显微硬度见表5。316L样件平均显微硬度为 175HV_{0.5},LaB₆/316L样件平均显微硬度提升了 35%,为237HV_{0.5}。结合前文中微观组织分析,添 加LaB₆使晶粒组织得到细化,晶粒细化后,总的晶 界面积增加,位错运动阻力增大,这就使得材料的 流变应力随之增大,从而产生细晶强化的效果。根

		Table 5	Microhardne	ess of SLM fo	orming parts			
计次	1	2	3	4	5	6	7	均值
$316L(HV_{0.5})$	179.29	171.85	191.14	166.74	180.25	170.1	163.49	174.69
$LaB_{6}/316L(HV_{0.5})$	242.04	233.46	243.35	231.61	230.7	240.09	238.17	237.06

据 Hall-Pech (H-P)关系: $H_v = H_{vo.} + K' d^{-1/2}$,材料的 强度或硬度随着晶粒尺寸的减小而提高^[34]。

2.5 拉伸性能

利用 Zwick/Roell Z050 电子万能试验机对 316L 样件和 LaB₆/316L 样件进行室温拉伸试验, 采用横梁位移控制方式,拉伸速率设为 0.5 mm/ min。拉伸样件见图 4(a)^[35],截面尺寸为厚度 5 mm、宽 12 mm、标距 50 mm。应力应变曲线见图 5(b)。由图 4(b)和表 6 可知,LaB₆/316L 样件相较于 316L 样件的极限抗拉强度提高了 5%,该变化也符 合 Hall-Pech 规律^[34],即晶粒的细化可增强材料的 硬度和强度,断面延伸率的降低可能是由于晶界存 在的 La₂O₃等夹杂相在一定程度上降低了材料塑 性延展的能力^[36]。

(a) Dimension drawing of tensile sample and its physical drawing

 Table 6
 Ultimate tensile strength and elongation value of tensile sample

制件	极限抗拉强度/MPa	延伸率/%
316L	606.87	32.17
LaB ₆ /316L	637.02	24.17

拉伸试样断口的 SEM 观察(见图 5)表明, 316L样件和LaB₆/316L样件的断口均存在明显的 韧窝结构(杯状凹坑)及少量解理面,属于典型的韧 性断裂^[37]。LaB₆/316L样件的断面晶界密度较 316L样件大,其更易形成韧窝,且抗拉强度变大, 这与图 4的结果一致。

(a) 316L sample
 (b) LaB_d/316L sample
 图 5 拉伸样件断口 SEM 图
 Fig.5 SEM of tensile sample fracture

2.6 摩擦磨损性能

316L样件和LaB₆/316L样件的摩擦实验结果 (图 6)显示LaB₆/316L样件的摩擦因数低于316L 样件,且摩擦因数较为稳定,波动范围小,表明 LaB₆的添加,使得316L样件的耐磨性能有了明显 的提高。图7表征了摩擦磨损试验后,两种样件的 磨损表面形貌。在磨损过程中,试样与GCr15钢 球相互摩擦引起表面材料的损失,产生一定的犁沟 和分层现象,属于典型的磨粒磨损。316L样件表 面磨损较为严重,出现较深的犁沟和分层现象,而 LaB₆/316L样件其磨损表面只存在较浅的犁沟,而 没有明显的分层现象。由擦痕假说可知,表面产生 的塑性变形会使压痕两侧材料受到损伤,从而使磨 料从表面挤出或剥落。分析认为,分布在组织中的 La₂O₃等生成相起到了弥散强化的作用,抑制了样

图7 SLM成形样件的磨损表面形貌

Fig.7 Wear surface morphology of SLM formed samples

件的塑性变形,从而阻止了样件的磨损。另外,由于LaB₆/316L样件的硬度较316L样件有较大幅度提升,硬度的提高使得材料的摩擦因数减小^[38],抑制了样件的进一步磨损,从而进一步提高了制件的耐磨性能。

3 结 论

本文研究了稀土材料 LaB。的添加对 316L 不 锈钢 SLM 成形制件显微组织与力学性能的影响。 研究结果表明:添加 LaB。稀土材料的 316L 材料其 SLM 成形工艺窗口发生了偏移,可在获取同等致 密度制件的条件下进一步降低激光功率密度并提 高扫描速度。添加微量 LaB。稀土材料可以改变 316L 材料熔池的熔凝行为,平均结晶晶粒得到细 化,显微硬度与极限抗拉强度分别提升了 35% 与 5%,耐磨性能得到显著提高。

参考文献:

- [1] 赵剑峰,马智勇,谢德巧,等.金属增材制造技术[J]. 南京航空航天大学学报,2014,46(5):675-683.
 ZHAO Jianfeng, MA Zhiyong, XIE Deqiao, et al. Metal additive manufacturing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014,46(5):675-683.
- [2] 王华明,张述泉,王韬,等.激光增材制造高性能大型 钛合金构件凝固晶粒形态及显微组织控制研究进展
 [J].西华大学学报(自然科学版),2018,37(4): 9-14.

WANG Huaming, ZHANG Shuquan, WANG Tao, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components [J]. Journal of Xihua University (Natural Science Edition), 2018, 37(4): 9-14.

- [3] 林鑫,黄卫东.高性能金属构件的激光增材制造[J]. 中国科学:信息科学,2015,45(9):1111-1126.
 LIN Xin, HUANG Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111-1126.
- [4] 杨永强,陈杰,宋长辉,等.金属零件激光选区熔化

技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 9-21.

YANG Yongqiang, CHEN Jie, SONG Changhui, et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 9-21.

- [5] SAMES W J, LIST F A, PANNALA S, et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 2016, 61(5): 1-46.
- [6] 杨永强,罗子艺,苏旭彬,等.不锈钢薄壁零件选区 激光熔化制造及影响因素研究[J].中国激光,2011, 38(1):60-67.

YANG Yongqiang, LUO Ziyi, SU Xubin, et al. Study on process and effective factors of stainless steelthin-wall parts manufactured by selective laser melting [J]. Chinese Journal of Lasers, 2011, 38(1): 60-67.

[7] 吴伟辉,杨永强,王迪,等.选区激光熔化变密度快速制造工艺研究[J].中国激光,2010,37(7):1879-1884.

WU Weihui, YANG Yongqiang, WANG Di, et al. Research on variable density rapid manufacturing process based on selective laser melting technology[J]. Chinese Journal of Lasers, 2010,37(7): 1879-1884.

[8] 陈秀娟,赵国瑞,董东东,等.选区激光熔化制造Inconel625高温合金的组织和力学性能[J].中国激光, 2019,46(12):70-78.

CHEN Xiujuan, ZHAO Guorui, DONG Dongdong, et al. Microstructure and mechanical properties of Inconel625 superalloy fabricated by selective laser melting [J]. Chinese Journal of Lasers, 2019, 46(12): 70-78.

- [9] FATEMI S A, ASHANY J Z, AGHCHAI A J, et al. Experimental investigation of process parameters on layer thickness and density in direct metal laser sintering: A response surface methodology approach[J]. Virtual and Physical Prototyping, 2017, 10(3): 1-8.
- [10] JEREMY H R, ZHANG Yong, ZHANG Kai, et al. Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting[J]. Scripta Materialia, 2019, 160(2): 66-69.
- [11] 尹燕,康平,肖梦智,等.热处理对选区激光熔化 CoCrW合金组织及显微硬度的影响[J].中国激光, 2019,46(10):105-112.
 YIN Yan, KANG Ping, XIAO Mengzhi, et al. Effect of heat treatment on microstructure and microhardness of CoCrW alloys processed by selective laser melting
 [J]. Chinese Journal of Lasers, 2019, 46 (10): 105-112.
- [12] 宗学文,高倩,周宏志,等.体激光能量密度对选区激光熔化316L不锈钢各向异性的影响[J].中国激光,2019,46(5):344-350.

ZONG Xuewen, GAO Qian, ZHOU Hongzhi, et al. Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel[J]. Chinese Journal of Lasers, 2019, 46(5): 344-350.

- [13] MODI Y K, SANADHYA S. Design and additive manufacturing of patient-specific cranial and pelvic bone implants from computed tomography data[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(10): 1-11.
- [14] 顾冬冬,戴冬华,夏木建,等.金属构件选区激光熔 化增材制造控形与控性的跨尺度物理学机制[J].南 京航空航天大学学报,2017,49(5):645-652.
 GU Dongdong, DAI Donghua, XIA Mujian, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 645-652.
- [15] 侯伟,陈静,储松林,等.选区激光熔化成形 Al-Si10Mg组织与拉伸性能的各向异性研究[J].中国激 光,2018,45(7):66-77.

HOU Wei, CHEN Jing, CHU Songlin, et al. Anisotropy of microstructure and tensile properties of Al-Si10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(7): 66-77.

[16] 陈德宁,刘婷婷,廖文和,等.扫描策略对金属粉末 选区激光熔化温度场的影响[J].中国激光,2016,43 (4):74-80.

CHEN Dening, LIU Tingting, LIAO Wenhe, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 74-80.

[17] 唐武,高义民,鲍崇高,等.Al₂O₃颗粒增强不锈钢基
 表面复合材料腐蚀性能的研究[J].西安交通大学学
 报,2000,34(5):106-108.

TANG Wu, GAO Yimin, BAO Chonggao, et al. Study on corrosion of aluminium oxide/stainless steel composites[J]. Journal of Xi'an Jiaotong University, 2000, 34(5): 106-108.

- [18] ALMANGOUR B, GRZESIAK D, YANG J M. Selective laser melting of TiC reinforced 316L stainless steelmatrix nanocomposites: Influence of starting TiC particle size and volume content[J]. Materials & Design, 2016, 104: 141-151.
- [19] 王龙妹, 杜挺. 铁液中[La]-[S]-[O]平衡的研究[J]. 稀土, 1986(2): 25-32.
- [20] 富晓阳,杨吉春,赵莉萍,等.稀土元素在钢中作用 机理与研究现状[J].湖南有色金属,2015,31(1): 55-57.

FU Xiaoyang, YANG Jichun, ZHAO Liping, et al. The action mechanisms of RE element in steel and its study on current status[J]. Hunan Nonferrous Metals, 2015, 31(1): 55-57.

- [21] WANG Longmei, LIN Qin, YUE Lijie, et al. Study of application of rare earth elements in advanced low alloy steels[J]. Journal of Alloys and Compounds, 2007, 451(1): 534-537.
- [22] LIU Yanqiang, WANG Lijun, CHOU Kuochi. Effects of cerium on resistance to pitting corrosion of spring steel used in fasteners of high-speed railway[J]. Steel Research International, 2014, 85(11): 1510-1516.
- [23] KIM S T, JEON S H, LEE I S, et al. Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel—Part 1[J]. Corrosion Science, 2010, 52(6): 1897-1904.
- [24] CAI Guojun, LI Changsheng. Effects of Ce on inclusions, microstructure, mechanical properties, and corrosion behavior of AISI 202 stainless steel[J]. Journal of Materials Engineering and Performance, 2015, 24 (10): 3989-4009.
- [25] 郝柳,任慧平,金自力,等.稀土La和退火工艺对高 强 IF 钢组织的影响[J].金属热处理,2017(11): 41-44.

HAO Liu, REN Huiping, JIN Zili, et al. Effects of rare earth La and annealing process on microstructure of high strength IF steel[J]. Heat Treatment of Metals, 2017(11): 41-44.

- [26] 李亚波,王福明,朱宝晶.稀土元素在铁索体不锈钢中的作用和应用前景[J].特殊钢,2008(3):39-41.
 LI Yabo, WANG Fuming, ZHU Baojing. Effect and application prospect of rare earth elements in iron-wire stainless steel[J]. Special Steel, 2008(3): 39-41.
- [27] 赵路遇.微量稀土元素在铸钢中的应用[J].材料开发与应用,2003(3):43-46.
 ZHAO Luyu. Application of trace rare earth element in cast steel[J]. Development and Application of Materials, 2003(3):43-46.
- [28] 王黎.选择性激光熔化成形金属零件性能研究[D]. 武汉:华中科技大学,2012.
 WANG Li. Research on the performance in selective laser melting of metallic part[D]. Wuhan: Huazhong University of Science and Technology, 2012.
- [29] KHAIRALLAH S A, ANDERSON A T, RUBEN-CHIK A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36-45.
- [30] 李春龙.稀土在钢中应用与研究新进展[J].稀土, 2013,34(3):78-85.

LI Chunlong. Application and research progress of rare

earth in steel[J]. Chinese Rare Earths, 2013, 34(3): 78-85.

- [31] 徐秀华. 六硼化镧粉体的制备及其烧结性能研究
 [D]. 长沙:湖南大学, 2011.
 XU Xiuhua. Preparation and sintering performance study of lanthanum hexaboride powders[D]. Chang-sha: Hunan University, 2011.
- [32]李峰,刘向东,任慧平,等.稀土镧对纯净钢中夹杂物及抗拉强度的影响[J].机械工程材料,2008,32
 (12):59-62.
 LI Feng, LIU Xiangdong, REN Huiping, et al. Ef-

fects of rare earth element La on inclusions and tensile strength of clean steel [J]. Materials for Mechanical Engineering, 2008, 32(12): 59-62.

[33] 孙洪涛,王志萍,白英丽,等.电感耦合等离子体原子发射光谱法测定铍中11种杂质元素[J].冶金分析,2020,40(1):56-62.

LIU Hongtao, WANG Zhiping, BAI Yingli, et al. Determination of eleven impurity elements in beryllium by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2020, 40 (1): 56-62.

[34] 卢柯, 刘学东, 胡壮麒. 纳米晶体材料的 Hall-Petch

关系[J]. 材料研究学报, 1994(5): 385-391. LU Ke, LIU Xuedong, HU Zhuangqi. Hall-Petch relationship of nanocrystalline materials[J]. Chinese Journal of Materials Research, 1994(5): 385-391.

- [35] 高怡斐,梁新帮,董莉,等.金属材料拉伸试验第1 部分:室温试验方法:GB/T 228.1—2010[S].北京: 中国标准出版社,2010.
- [36] 李文虎,付胜海,艾桃桃,等.La₂O₃对 Mo-25Si-8.5B 合金摩擦磨损性能的影响[J].金属热处理, 2019,44(5):18-21.
 LI Wenhu, FU Shenghai, AI Taotao, et al. Effect of La₂O₃ on friction and wear characteristics of Mo-25Si-8.5B alloy[J]. Heat Treatment of Metals, 2019,44 (5):18-21.
 [37] 钟培道.断裂失效分析[J].理化检验(物理分册),

2005(7): 375-378. ZHONG Peidao. Fracture failure ananlysis[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2005(7): 375-378.

[38] 彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004.

PENG Dashu. Principle of metal plastic processing [M]. Changsha: Central South University, 2004.

(编辑:胥橙庭)