DOI:10.16356/j.1005-2615.2020.03.015

基于BP神经网络的含褶皱复合材料强度预测

霍冠良,宁志华

(暨南大学力学与建筑工程学院,广州,510632)

摘要:利用BP(Back propagation)神经网络处理多参数问题具有的非线性映射及泛化能力,构建了具有3层隐藏 层的神经网络,对含纤维褶皱复合材料层合板的压缩强度进行预测。基于LaRC失效准则建立三维损伤模型,对 含褶皱复合材料的压缩失效进行数值分析。将数值分析结果作为数据样本对神经网络进行训练。采用黄金分 割法快速确定最佳隐藏层神经元数量区间范围,并通过分析对比不同数量神经元模型的强度预测结果及评价指标,确定具有高预测精度的隐藏层神经元数量。结果表明,所构建的神经网络预测最大褶皱角为5.6°、9.9°和 11.4°的3种层合板失效强度误差分别为3.4%、4.6%和-0.01%。本文所发展的基于BP神经网络对复合材料强 度进行预测的方法,为工程应用中复合材料强度评估提供了一种有效的途径。 关键词:复合材料层合板;纤维褶皱;LaRC准则;BP神经网络 中图分类号:TB330.1 文献标志码:A 文章编号:1005-2615(2020)03-0460-08

Strength Prediction of Laminates Containing Embedded Fiber Wrinkles Using BP Neural Networks

HUO Guanliang, NING Zhihua

(School of Mechanics and Construction Engineering, Jinan University, Guangzhou, 510632, China)

Abstract: Taking advantages of the BP neural network in nonlinear mapping and generalization capabilities for multi-parameter problems, the BP neural networks with three hidden layers were constructed to predict the compressive strength of laminates containing embedded fiber wrinkles. The compressive failure was numerically simulated based on a three-dimensional damage model with the LaRC criterion. The numerical results were used as data samples for the networks training. An algorithm based on the golden section method was proposed to quickly determine the range of the neurons number in the hidden layer of the BP neural networks. Then the best number of the neurons was finally determined by comparing the prediction results and the assessment indicators of different cases. The results show that, the error of the strengths of the laminates with the maximum wrinkle angles of 5.6° , 9.9° and 11.4° predicted by the developed BP neural networks are 3.4%, 4.6%, and -0.01%, respectively. The approach developed in the present work to predict the strength of composite materials based on the BP neural networks provides an effective way for the strength evaluation of composite materials in application.

Key words: composites laminate; fiber wrinkle; LaRC criterion; BP neural networks

纤维增强复合材料具有高比模量和比强度等 多种优异性能,已被广泛应用于多个工程领域,如 航空航天、汽车及土木工程等。复合材料在制作和 加工过程中不可避免地会出现各种缺陷,而纤维褶 皱是常见的缺陷之一。大量试验和研究^[14]表明, 纤维褶皱对复合材料层合板的压缩强度和刚度有

基金项目:国家自然科学基金(11302083)资助项目;广东省自然科学基金(2018A0303130128)资助项目。

收稿日期:2020-01-05;修订日期:2020-04-01

通信作者:宁志华,女,副教授,硕士生导师,E-mail:tningzhihua@jnu.edu.cn。

引用格式: 霍冠良, 宁志华. 基于 BP 神经网络的含褶皱复合材料强度预测[J]. 南京航空航天大学学报, 2020, 52(3): 460-467. HUO Guanliang, NING Zhihua. Strength prediction of laminates containing embedded fiber wrinkles using BP neural net-works[J]. Journal of Nanjing University of Aeronautics & Astronautics, XXXX, 52(3): 460-467.

着显著的影响。Hsiao和Daniel^[1-2]对单向面外褶皱的复合板进行实验观察,发现褶皱会显著地降低层合板的刚度和压缩强度。Adams等^[3-4]研究了褶皱形状参数对压缩强度的影响,认为最大褶皱角是影响层合板压缩强度的最主要因素。Mukhopadhyay等^[5],Nair等^[6]对含纤维褶皱层合板进行了有限元模拟及试验测试,获得了不同褶皱程度下层合板的压缩强度。

含纤维褶皱复合材料的力学性能预测较为复 杂,通常采用数值分析或试验测试方法进行研究。 近年来,随着计算机性能的大幅提升,神经网络被 应用到各个行业中,包括应用于复合材料性能预测 领域。Chakraborty^[7]首先利用有限元方法对复合 材料分层损伤进行了上百个模型预测,再把有限元 结果投放到 BP(Back propagation)神经网络中进行 分层预测,成功揭示了预制分层参数对分层损伤的 影响。Srivastava等^[8]运用有限元模拟智能复合材 料层合板的动力响应,把不同铺设方法的有限元模 型响应结果作为BP神经网络的训练数据,成功预 测出不同铺设方法的层合板振动响应。Kadi¹⁹比 较了人工神经网络与多项式分类两种方法对复合 材料疲劳寿命的预测,结果表明人工神经网络比多 项式分类在多变量参数的非线性预测中更具有优 势。Suresh 等^[10]利用声发射技术监测复合材料在 海水中浸泡时长对材料老化的影响程度,并把监测 数据应用于径向基函数神经网络和广义回归神经 网络两种模型中进行训练。

以上的文献工作表明,神经网络可应用于复合 材料的性能预测。含纤维褶皱复合材料层合板在 压缩载荷下的力学性能受铺设角、最大褶皱角及加 载位移等多种因素的影响。由于 BP 神经网络处 理多参数问题具有优越的非线性映射能力及泛化 能力,非常适合应用于含褶皱复合材料层合板的压 缩强度预测。本文通过建立基于 LaRC^[11]损伤准则

 $f_{\rm mat}$

的三维有限元模型对含纤维褶皱复合材料层合板 的压缩失效进行数值分析,并将数值模拟结果作为 数据集,构建 BP 神经网络,把褶皱角和加载位移 作为输入参数,对含褶皱复合材料层合板压缩强度 进行预测。针对隐藏层神经元数量的确定问题,提 出了基于黄金分割法快速确定隐藏层节点数的有 效算法,并讨论了隐藏层节点数对预测结果精度的 影响。

含纤维褶皱层合板压缩破坏的数 值模拟

BP神经网络的学习需要大量数据的支持。为获得神经网络的训练样本,需要通过有限元数值模拟含纤维褶皱复合材料的压缩破坏,获取纤维褶皱 参数与压缩强度关系的大量数据。

下面将基于LaRC损伤准则,建立三维损伤模型,通过有限元程序Abaqus/Explicit^[12]实现含纤维褶皱的复合材料层合板压缩破坏的数值模拟。

1.1 复合材料的压缩损伤模式

复合材料层合板在压缩载荷下主要存在4种 损伤模式:分层、纤维拉伸断裂、纤维压缩扭结或劈 裂及基体开裂。其中,分层为层间损伤模式,其余 3种损伤为层合板面内损伤模式。损伤的萌生采 用 Pinho^[11]提出的LaRC 准则:

(I)纤维拉伸断裂

$$f_{\rm ft} = \frac{\sigma_{11}}{X_T} = 1 \qquad \sigma_{11} > 0$$
 (1)

(II)纤维压缩扭结或劈裂

$$f_{\text{kink}} = f_{\text{split}} = \left(\frac{\tau_{23}^{m}}{S_{T} - \mu_{T}\sigma_{22}^{m}}\right)^{2} + \left(\frac{\tau_{12}^{m}}{S_{L} - \mu_{L}\sigma_{22}^{m}}\right)^{2} + \left(\frac{\left\langle\sigma_{22}^{m}\right\rangle}{Y_{T}}\right)^{2}$$

$$(2)$$

(III) 基体开裂

$$=\begin{cases} f_{\rm mt} = \left(\frac{\tau_T}{S_T - \mu_T \sigma_N}\right)^2 + \left(\frac{\tau_L}{S_L - \mu_L \sigma_N}\right)^2 = 1 & \sigma_N < 0\\ f_{\rm mc} = \left(\frac{\sigma_N}{Y_T}\right)^2 + \left(\frac{\tau_T}{S_T}\right)^2 + \left(\frac{\tau_L}{S_L}\right)^2 = 1 & \sigma_N \ge 0 \end{cases}$$
(3)

(IV) 分层损伤(cohesive 模型^[13])

$$\sqrt{\left(\frac{\max\left(\sigma_{\mathrm{I}},0\right)}{\sigma_{\mathrm{I}}^{\max}}\right)^{2} + \left(\frac{\sigma_{\mathrm{II}}}{\sigma_{\mathrm{II}}^{\max}}\right)^{2}} = 1 \qquad (4)$$

式中: $f_{fx}f_{kink}$ 、 f_{split} 、 f_{max} 、 f_{mt} 及 f_{mc} 分别表示纤维拉伸、 纤维扭结、纤维劈裂、基体损伤、基体拉伸损伤和基 体压缩损伤的损伤因子; X_T 、 Y_T 分别表示层合板纵 向和横向拉伸强度; S_L 、 S_T 分别表示纵向与横向的 剪切强度; μ_L 、 μ_T 表示基体断裂面上纵向与横向摩 擦因数; σ_{11} 是纤维方向的应力; σ_{N} 、 τ_{L} 和 τ_{T} 分别为基体断裂面上的正应力、纵向和横向剪应力; σ_{22}^{m} 、 τ_{12}^{m} 和 τ_{23}^{m} 表示纤维偏转坐标系下的横向正应力、面内和面外剪应力; σ_{1} 和 σ_{11} 表示 cohesive 单元的法向和横向剪切应力; σ_{1}^{max} 和 σ_{11}^{max} 分别为界面单元的法向与剪切强度。

1.2 损伤演化模型

层合板出现损伤后,材料性能就会软化导致承

载力下降。层间分层损伤演化采用线性退化 准则^[13]

$$d_{\text{delam}} = \max\left\{0, \min\left\{1, \frac{\delta_m - \delta_m^0}{\delta_m^f - \delta_m^0}\right\}\right\}$$
(5)

式中: d_{delam} 表示分层损伤变量; δ_m 表示等效位移; δ_m^0 和 δ_m^i 分别代表初始损伤等效位移和最终失效等效 位移;max函数表明损伤的不可逆性。

面内损伤演化采用指数退化形式[14]

$$d_{\rm I} = 1 - \frac{1}{f_{\rm I}} \exp\left[A_{\rm I}(1 - f_{\rm I})\right], \tag{6}$$

 $I \in (mt, mc, ft, kink \text{ or split})$

式中:f₁和 d₁分别表示4种损伤模式的损伤因子和 损伤变量;A₁表示为防止单元出现畸变而引入单 元特征长度 L_c的指数因子。

1.3 有限元模型的建立

为便于对比验证,本文采用 Mukhopadhyay^[5]

的含纤维褶皱复合材料层合板模型。该层合板单 层名义厚度为0.125 mm,铺设方式为[45₂/90₂/ -45₂/0₂]_{3s},材料为IM7/8552,其性能参数见表1, 与其对应的层间内聚力单元材料属性见表2。建 立的有限元模型如图1所示,褶皱形貌采用余弦函 数近似表示为

$$h_w = h_0 + \Delta h \tag{7}$$

其中

$$\Delta h = \begin{cases} \frac{B\delta}{2} \cos\left(\frac{2\pi x}{\lambda}\right) & -\frac{\lambda}{2} \leqslant x \leqslant \frac{\lambda}{2} \\ 0 & \pm \psi \end{cases}$$

式中:h₀为无褶皱区域节点的厚度方向坐标;h_w为 褶皱区域节点的厚度方向坐标;δ为褶皱的最大幅 值;λ为褶皱波长;B为中心线的褶皱幅值沿厚度变 化的参数,按1.0:0.63:0.39:0.0的比例变化。

	表1 IM7/8552材料参数 ^[5,15]	l
Table 1	Material parameters of IM7/85	52 lamina ^{[5,15}

$E_{\rm 11}/{ m MPa}$	$E_{\rm 22}/{ m MPa}$	$E_{\scriptscriptstyle 33}/{ m MPa}$	G_{12}/MPa	$G_{\rm l3}/{ m MPa}$	$G_{\rm 23}/{ m MPa}$
161 000	11 380	11 380	5 170	5 170	3 980
$X_{\rm T}/{ m MPa}$	X_c/MPa	Y_T/MPa	Y_c/MPa	$S_L/{ m MPa}$	$\theta/(^{\circ})$
2 560	1 590	73	250	113	1.5
$\mu_{\scriptscriptstyle 12}$	μ_{13}	$\mu_{\scriptscriptstyle 23}$	$G_{\rm IC}/({\rm N}{ullet}{ m mm}^{-1})$	$G_{\rm IIC}/({ m N}{ m \cdot mm^{-1}})$	$G_{\rm kink}/({ m N}{ m \bullet}{ m mm}^{-1})$
0.32	0.32	0.43	0.26	1.002	80

表 2 IM7/8552 内聚力单元材料属性^[5] Table 2 IM7/8552 properties for cohesive element^[5]

$K_{\rm I}/({ m N} \cdot { m mm}^{-3})$	$K_{II}/(N \cdot mm^{-3})$	$\sigma_{\rm I}^{\rm max}/{ m MPa}$	$\sigma_{ m II}^{ m max}/ m MPa$	$G_{\rm IC}/({ m N} {ullet} { m mm}^{-1})$	$G_{\rm IIC}/({ m N} \cdot { m mm}^{-1})$	α
10^{5}	10^{5}	60	90	0.26	1.002	1

图1 含褶皱层合板的有限元网格(单位:mm) Fig.1 FE mesh of laminate with wrinkles(unit:mm)

1.4 数值模拟结果

运用上述有限元模型,考虑层合板的最大褶皱 角为5.6°、9.9°及11.4°三种情形,分别对其压缩失效 进行数值模拟,得到压缩强度结果见表3。与试验 结果^[5]对比,9.9°的最大误差为12.04%,但另两种 情形的误差为5%~7%。

预测得到的压缩应力-位移曲线见图 2。与 Mukhopadhyay^[5]的有限元结果相比,模型的刚度、

表3 压缩强度的有限元模拟结果

Table 3 Compressive strength from numerical simulation

潮血和 亩 /						
怕坝住皮/	试验值/MP。	有限几结米				
(°)	四小亚 旧/ IVII a	强度值/MPa	误差/%			
5.6	527.9	584.5	6.93			
9.9	428.4	480.0	12.04			
11.4	432.0	454.8	5.28			

失效位移及强度吻合较好。

利用上述有限元模型可获得不同褶皱程度的

强度预测结果,并将其投放至BP神经网络中进行训练。

2 BP神经网络的构建

2.1 模型结构

BP神经网络的拓扑结构见图3,包括输入层、 若干个隐藏层和输出层。输入数据与误差在输入 层、隐藏层和输出层之间进行着正向与反向的传 播。假设给定的关于复合材料层合板压缩失效强 度预测的训练集样本为 $D=\{(x_1,y_1),(x_2,y_2),\cdots(x_m,y_m)\},其中x_m为样本数据的输入信号,包括层合板$ $的最大褶皱角和加载过程中的位移,即图3中的<math>\theta$ 和 $U;y_m为样本数据的强度标签值。输入信号x_m$ 在网络结构中正向传递,经过隐藏层的逐层处理把 $预测应力强度<math>\hat{y}_m$ 传递至输出层

$$\hat{y}_{j}^{n} = f\left(\sum_{i=1}^{m} w_{ij}^{n} \hat{y}_{i}^{n-1} + b_{i}^{n-1}\right)$$
(8)

式中: $w_{ij}^{n} n b_{i}^{n-1}$ 分别表示网络的第n-1层的第i个节点到第n层的第j个节点的连接权重和偏置修 正值; \hat{y}_{j}^{n} 表示网络的第n层第j个节点的预测结果; \hat{y}_{i}^{n-1} 为前一层网络的数据,当n=1时表示输入信 号值; f为激活函数。

若预测强度ý与真实应力强度y不符,则把两 者间的误差作为输入信号从输出层输入,并基于梯 度下降的方法反向传递,使得每个训练样本的相对 误差往其负梯度方向变化以达到修正各层权值的 目的,最终使预测强度与真实强度相一致,提高网 络系统对输入信号的响应正确率^[16]。对于样本(*x*_k, *y*_k),假定其预测强度值为*ŷ*_k,该样本的均方误差*E* 可表示为

$$E = \frac{1}{2} \sum_{k=1}^{m} (\hat{y}_k - y_k)^2$$
(9)

梯度下降法的本质是利用微积分的链式求导 法则反复修正各层的权值,以达到网络的自我优 化。根据链式求导法则,该梯度可表示为

$$\frac{\partial E}{\partial w_{ii}^{n}} = \frac{\partial E}{\partial \hat{y}_{i}^{n}} \frac{\partial \hat{y}_{j}^{n}}{\partial w_{ii}^{n}} \tag{10}$$

将式(8)和式(9)代入式(10)中,式(10)可写成

$$\frac{\partial E}{\partial w_{ij}^n} = \frac{\partial E}{\partial \hat{y}_j^n} \, \hat{y}_i^{n-1} \tag{11}$$

令
$$\delta_{j}^{n} = \frac{\partial E}{\partial \hat{y}_{j}^{n}}$$
,任意层的权重梯度可表示为
$$\frac{\partial E}{\partial w_{i}^{n}} = \delta_{j}^{n} \hat{y}_{i}^{n-1}$$
(12)

可以看出,任意层节点的权重梯度等于与其相 连的前一层节点的输出 ŷ_iⁿ⁻¹乘以与其相连的后一 层的反向传播输出δ_iⁿ。

2.2 黄金分割法确定隐藏层节点数

隐藏层数和每层隐藏层的节点数是BP神经 网络两个非常重要的参数,两者的设置对BP神经 网络的计算效率与计算精度有着直接的影响。若 隐藏层数或隐藏层节点数太少,网络可能无法进行 学习;反之,隐藏层数或隐藏层节点数过多,虽然能 在一定程度上减少系统误差,但也会使得网络的训 练时间大幅度增加的同时出现"过拟合",整个网络 最终失去了泛化能力。关于隐藏层数的确定, Hechtnielsen^[17]已经证明使用一个隐藏层就足以实 现逼近任意连续非线性函数,只有当目标函数不连 续时才需要两层以上的隐藏层。但对于隐藏层的 节点数的确定至今仍缺乏理论的指导,应用中一般 依赖如下经验公式^[18-19]

$$H = \sqrt{I + O} + N \tag{13}$$

$$H = \log_2 I \tag{14}$$

$$H = \sum_{i=0}^{I} C_{H}^{i} \geqslant k \tag{15}$$

式中:H为隐藏层节点数;I为输入层节点数;O为 输出层节点数;N为1~10的常数;k为训练样 本量。

采用黄金分割法快速确定隐藏层节点数。通 过联立式(13)至式(15),可以得到一个关于隐藏层 节点数的区间[*a*, *b*],根据王嵘冰等^[20]提出的"三分 法"算法,该区间包含着最佳节点数,只要在该区间 内尝试便可找到。以图4抛物线曲线为例,在区间 [*a*, *b*]中应用黄金分割法快速确定更优的节点数*c* 和*d*

$$c = a + \frac{\sqrt{5} - 1}{2}(b - a) \tag{16}$$

$$d = a + \frac{\sqrt{5} - 1}{2}(c - a) \tag{17}$$

若 c 处的训练效果比 d 处好,则在区间[c,d]中应用黄金分割法进一步缩小范围至最佳,寻找到最 佳节点数 e

$$e = a + \frac{\sqrt{5} - 1}{2}(c - d) \tag{18}$$

否则在区间[*a*,*d*]中使用同样的方法寻找最优节点数*e*

$$e = a + \frac{\sqrt{5} - 1}{2}(d - a) \tag{19}$$

Fig.4 Searching for number of neurons in the hidden layer

2.3 数据处理及评价指标

由于输入数据中的最大褶皱角θ和加载位移 U量纲的不同,在数值上存在量级差异,为避免对 BP网络的计算精度产生影响,同时加速网络的收 敛速度,需要根据样本数据的特性,对输入数据进 行 Z-score标准化处理,使得输入数据符合标准正 态分布。Z-score标准化公式如下

$$X_i'(k) = \frac{X(k) - \mu_i}{\sigma_i} \tag{20}$$

式中:X表示原始输入数据;X'表示经过标准化的 输入数据;µ表示样本数据的均值;σ表示样本数据 的标准差;下标*i*=1,2分别表示最大褶皱角和位 移;k表示样本数量。

为更好地量化评估隐藏层不同节点数量的BP 神经网络效果,分别采用绝对平均误差(Mean absolute error, MAE)、均方根误差(Root mean square error, RMSE)以及决定系数 R^2 (Coefficient of determination)3个指标对网络模型进行评价。MAE与 RMSE偏向于误差的分析,数值越小,模型的误差 则越小;而 R^2 则更能描述模型的准确率, R^2 越接近 于1模型的准确度越高。

MAE =
$$\frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$$
 (21)

RMSE =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2}$$
 (22)

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i}^{m} (y_{i} - \overline{y}_{i})^{2}}$$
(23)

式中: y_i 为样本的真实值; \hat{y}_i 为 BP 网络预测值; \overline{y}_i 为样本真实值的平均值; m表示样本数量。

3 强度预测及误差分析

根据上述方法,本文搭建的预测含纤维褶皱复 合材料层合板压缩强度的BP神经网络模型结构 如下:输入层神经元个数*d*=2,输出层神经元个数 *l*=1;由于样本数据具有显著的非连续性特征,因 此隐藏层数取3层,每个隐藏层取相同数量的神经 元,激活函数为Tanh函数。

在网络搭建完成后,把最大褶皱角 θ_{train} ={0°, 1°,2°,3°,4°,5°,7°,8°,9°,12°,13°,14°,15°}共3000 多组模型数据作为训练集,最大褶皱角 θ_{test} ={5.6°, 9.9°,11.4°}约600组有限元模型数据作为测试集。 设置学习率为η=0.001,训练10⁴次。

根据式(13)至(15),计算出最佳区间为[1,80], 应用黄金分割法快速确定几个合适的隐藏层神经 元个数*H*={48,30,18,12,8,4}。通常情况下,最佳 神经元数量一般不会处于区间端部,因此选取区间 [12,18]进行初始尝试,并往两端*H*=8和30延伸, 尽可能减少尝试次数。

表4给出了对不同隐藏层神经元数量网络模型的评价结果。由表中数据可以看出,BP神经网络的隐藏层神经元数量并非越多越好。隐藏层的神经元数量取12时,决定系数*R*²达到了最优值0.926;当隐藏层神经元数量取15时,虽然绝对平均误差MAE及均方根误差RMSE优于神经元数量为12,但决定系数*R*²却相反。

不同隐藏层神经元数量网络模型对层合板压 缩强度预测的结果见表 5。由表中的预测结果可 见,神经元数量*H*=12的网络模型对于 5.6°和 9.9°

表4 不同数量神经元性能统计

Table 4 Performance statistics of different number of neurons

Neurons	MAE/MPa	RMSE/MPa	R^{2}
8	1.74	5.17	0.885
10	1.69	4.55	0.897
12	1.08	2.20	0.926
15	0.43	1.98	0.884
18	18.72	54.36	0.428
30	5.36	11.34	0.755

两个试件模型的预测误差虽然大于神经元数量*H* =8 和 10 的网络模型,但对于 11.4°试件的失效强 度预测误差,*H*=12 的网络模型明显优于另外 3 个 网络模型。另外从整体来看,H=12的网络模型针 对3种不同褶皱程度的强度预测误差要比其他网 络模型更为均衡,三者误差均在5%范围内。

	表 5	压缩强度预测结果
Table 5	Predic	tion of compressive strength

		BP神经网络							
褶皱程度/	实验强度/	/ 8 neurons		10 neurons		12 neurons		15 neurons	
(°)	MPa	强度值/	冯 苯 / 0/	强度值/	追 苯 / 0/	强度值/	坦 苯 / 0/	强度值/	归
		MPa	庆左/70	MPa	庆左/ 70 a	MPa	庆左/ 70	MPa	庆左/ 70
5.6	527.9	541.7	2.6	543.2	2.9	546.1	3.4	587.1	11.2
9.9	428.4	442.6	3.3	441.2	3.0	448.3	4.6	415.6	-3.0
11.4	432.0	391.2	-9.4	403.8	-6.5	431.5	-0.01	377.8	-12.5

图 5 为不同隐藏层神经元数量网络模型对测 试集的预测效果。从整体来看,可以明显地看出神 经元数量*H*={8,10,12,15}模型对测试集的拟合效 果均比较好,但随着神经元数量的继续增加,拟合效果反而变差。当层合板的承载力达到顶峰后,4 个模型对强度值的预测表现并不相同,H=12时的

拟合效果更佳。

因此,结合表4、5和图5,将BP神经网络隐藏 层神经元数量取为12。根据表5的强度预测结果, 可知所选取的BP神经网络对褶皱程度分别为 5.6°,9.9°和11.4°的层合板压缩强度预测与实验结 果的误差分别为3.4%,4.6%和-0.01%。

图 6给出了隐藏层神经元数为12的模型训练 过程中训练样本与测试样本的均方误差(Mean square error, MSE)的变化过程。如图所示,随着 样本数据的训练次数的增加,误差值迅速地下降, 并在接近4000次处收敛。在训练的开始阶段,训 练样本与测试样本的下降速度和趋势基本相似,说 明该模型对样本数据实现了很好的逼近拟合;对模 型的继续训练阶段,两个数据样本的误差均趋于稳 定范围内,表明该模型稳定可靠。

Fig.6 Training MSE curves of BP neural networks model

4 结 论

通过构建具有3层隐藏层的BP神经网络,将 有限元模拟的结果作为数据集对含褶皱纤维增强 复合材料层合板的压缩强度进行预测。针对BP 神经网络的隐藏层神经元数量难以确定的问题,利 用经验公式确定最佳隐藏层神经元数量区间,并通 过黄金分割法快速缩小该区间范围。对比6个不 同数量神经元模型的强度预测结果及指标评价分 析,结果表明取隐藏层神经元数量为12的模型,其 网络预测精度最佳。所构建的BP神经网络对最 大褶皱角θ为5.6°、9.9°和11.4°三种不同褶皱程度 的层合板压缩强度的预测误差分别为3.4%、4.6% 和-0.01%。本文通过采用有限元数值分析和BP 神经网络的结合,为工程应用中复合材料性能评估 提供了一种有效途径。

参考文献:

[1] HSIAO H M, DANIEL I M. Effect of fiber waviness

on stiffness and strength reduction of unidirectional composites under compressive loading[J]. Composites Science and Technology, 1996, 56(5): 581-593.

- [2] HSIAO H M, DANIEL I M. Elastic properties of composites with fiber waviness [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27 (10): 931-941.
- [3] ADAMS D O H, HYER M W. Effects of layer waviness on the compression strength of thermo-plastic composite laminates[J]. Journal of Reinforced Plastics and Composites, 1993, 12(4): 414-429.
- [4] ADAMS D O H, BELL S J. Compression strength reductions in composite laminates due to multiple-layer waviness[J]. Composites Science and Technology, 1995, 53(2): 207-212.
- [5] MUKHOPADHYAY S, JONES M, HALLETT S. Compressive failure of laminates containing an embedded wrinkle: Experimental and numerical study[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 132-142.
- [6] NAIR N S, DASARI A, YUE Y C, et al. Failure behavior of unidirectional composites under compression loading: Effect of fiber waviness[J]. Materials, 2017, 10(8): 909-922.
- [7] CHAKRABORTY D. Artificial neural network based delamination prediction in laminated composites[J]. Materials and Design, 2005, 26(1): 1-7.
- [8] SRIVASTAVA A, AGARWAL A, CHAKRABORTY D, et al. Control of smart laminated FRP structures using artificial neural networks[J]. Journal of Reinforced Plastics and Composites, 2005, 24 (13) : 1353-1364.
- [9] KADI H A. Fatigue life prediction of composite materials: Artificial neural networks vs. polynomial classifiers [J]. Key Engineering Materials, 2011, 471/472: 221-226.
- [10] SURESH K C, ARUMUGAM V, SENGOTTU-VELUSAMY R, et al. Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network[J]. Applied Acoustics, 2017, 115: 32-41.
- [11] PINHO S, DARVIZEH R, ROBINSON P, et al. Material and structural response of polymer-matrix fibre-reinforced composites[J]. Journal of Composite Materials, 2012, 46(19/20): 2313-2341.
- [12] ABAQUS Inc. Dassault systems. Simulia. Abaqus user's manual[M]. Version 6.14. Providence, RI, USA: [s.n.], 2014.
- [13] JIANG Wenguang, HALLETT S R, GREEN B G, et al. A concise interface constitutive law for analysis

of delamination and splitting in composite materials and its application to scaled notched tensile specimens [J]. International Journal for Numerical Methods in Engineering, 2007, 69(9): 1982-1995.

- [14] REINOSO J, CATALANOTTI G, BLAZQUEZ A, et al. A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion[J]. International Journal of Solids and Structures, 2017, 126/127: 37-53.
- [15] 薛康,肖毅,王杰,等.单向纤维增强聚合物复合材料 压缩渐进破坏[J].复合材料学报,2019,36(6): 1398-1412.

XUE Kang, XIAO Yi, WANG Jie, et al. Compression progressive failure of unidirectional fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1398-1412.

- [16] PHAN M, HAGAN M. Error surface of recurrent networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(11): 1709-1721.
- [17] HECHTNIELSEN R. Theory of the back propagation neural network[C]//Proceedings of International

Joint Conference on Neural Networks. New York: IEEE Press, 2002: 593-605.

 [18] 沈花玉, 王兆霞, 高成耀, 等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报, 2008, 24(5): 13-15.

SHEN Huayu, WANG Zhaoxia, GAO Chengyao, et al. Determining the number of BP neural network hidden layer units[J]. Journal of Tianjin University of Technology, 2008, 24(5): 13-15.

- [19] 张德贤.前向神经网络合理隐含层结点个数估计[J]. 计算机工程与应用, 2003(5): 21-23.
 ZHANG Dexian. A new approach for the efficient estimation of the number of hidden units for feedforward neural networks[J]. Computer Engineering and Applications, 2003(5): 21-23.
- [20] 王嵘冰,徐红艳,李波,等.BP神经网络隐含层节点数确定方法研究[J].计算机技术与发展,2018,28
 (4):31-35.

WANG Rongbing, XU Hongyan, LI Bo, et al. Research on method of determining hidden layer nodes in BP neural network[J]. Computer Technology and Development, 2018, 28(4): 31-35.

(编辑:胥橙庭)