一种针对铆接结构进行疲劳寿命评估的新方法

赵 平1 李旭东2 于化东1 吴东流2

(1. 长春理工大学机电工程学院,长春,130022; 2. 中国航空综合技术研究所,北京,100028)

摘要:提出了一种针对铆接结构进行疲劳寿命评估的新方法。首先,运用弹塑性理论模型求解出铆接造成的铆 钉孔周边的残余应力。然后,通过三维弹塑性、接触非线性有限元分析(Finite element method,FEM),计算出载 荷传递引起的铆钉孔周围的应力分布。将这两个应力场进行叠加,并将沿径向距离疲劳危险部位应力最大处特 定距离的点的应力,对照相关材料的光滑试件 S-N 曲线进行插值,得到疲劳寿命的评估结果。新方法与应力严 重系数法(Stress severity factor,SSF)法进行了对比,并通过试验验证了该方法的可行性和准确性。 关键词:铆接结构;疲劳寿命评估;残余应力;弹塑性;接触非线性;三维有限元

中图分类号:V214 文献标志码:A 文章编号:1005-2615(2014)02-0310-06

New Method of Fatigue Life Prediction for Riveted Structure

Zhao Ping¹, Li Xudong², Yu Huadong¹, Wu Dongliu²

(1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology,

Changchun, 130022, China; 2. China Aero-Polytechnology Establishment, Beijing, 100028, China)

Abstract: A new method of fatigue life prediction for riveted structure is presented. Elastic-plastic theoretical model is used to obtain the distribution of riveted residual stress around riveted hole, and the distribution of stress around riveted hole caused by loading transferring is calculated by 3-D elastic-plastic contact nonlinear finite element method(FEM). The above two stress fields are superimposed. According to the stress value of the point with a certain distance along the radial direction from the fatigue dangerous position where the stress is maximum, the fatigue life prediction is carried out by interpolating the S-N curve of smooth specimen of the referred material. The new method is compared with the stress severity factor(SSF) method, and feasibility and accuracy of the new method are proved by experiments.

Key words: riveted structure; fatigue life estimation; residual stress; elastic-plastic; contact nonlinear; 3-D finite element (FE)

铆接结构是一种常见的航空结构形式,在疲劳 载荷作用下,破坏大多从铆接孔处开始,铆接连接 件的寿命通常控制了飞机结构的疲劳寿命。因此, 对于铆接等航空结构连接件的寿命评估,是对航空 结构进行疲劳寿命评估的重要组成部分。

应力严重系数法^[1-2](Stress severity factor, SSF)是针对航空结构连接件发展出来的一种疲劳 寿命评估方法。该方法通过对飞机结构进行有限 元分析,得到钉孔处的钉传载荷和旁路载荷,进而 求出孔边的应力严重系数 SSF,并将 SSF 作为理 论应力集中系数 k_T,结合简单缺口件的 S-N 曲线 来估算结构连接件的寿命。然而,这样一种针对航 空结构连接件的工程常用疲劳评估方法,却存在不 少理论上难以回避的硬伤。

针对 SSF 法在理论基础上存在的固有缺陷, 本文在名义应力法框架内,对航空铆接结构连接件 给出了一种疲劳寿命评估的新方法。相比较 SSF 法,这种新方法在理论上更加严密,条理更加清晰。

收稿日期:2013-07-16;修订日期:2013-11-04

通信作者:李旭东,男,博士,高级工程师,E-mail:lixudong08@gmail.com。

对一种航空铆接结构模拟试件进行了疲劳试验,相 关试验数据验证了这一新的疲劳寿命评估方法的 可行性和准确性,并与等效 SSF 法获得的评估结 果进行了对比。

1 模型试验

图 1 为从航空结构中抽象出来的、具有代表性的铆接结构模型试件示意图。厚度为 3 mm 的下带板(2A12 铝合金,材料状态 T4),厚度为 3.6 mm 的下壁板(2A12 铝合金,材料状态 T0)和厚度为 3.2 mm 的肋缘条(7A09 铝合金),通过环槽钉铆接到一起。

在试验室常温环境下,通过 MTS-880 型动态 疲劳试验机对该结构件施加疲劳载荷。试验件在 疲劳试验机上装夹时注意保证了良好的对中,以减 小力的偏心。加载波形为正弦波形,加载频率采用 加载速率控制,大多控制在150~250 kN/s 范围 内,加载频率为4~7 Hz。所施加的载荷为一具有 代表性的"飞一续一飞"谱,包括"状态 I"和"状态 II"两种状态。在过载状态 1g 时,对应于状态 I,须 通过疲劳试验机沿图1所示拉伸方向对模拟件施 加 15.06 kN 的拉伸载荷,对应于状态 II,须通过疲 劳试验机对模拟件施加 14.90 kN 的拉伸载荷。 表1为一个"飞一续一飞"块谱所对应的等效加载 状态和周次。该"飞一续一飞"块谱中带有小数,试 验机需要的只能是整数,故在试验中,各状态下的 循环数分开累积。当累积到大于或等于1时,就在 当前加载块谱中加一个循环;若当前块谱加载完 后,仍然留有小数,则累计到下一个块谱中。试验做 到破坏为止。试验结束后,对试件进行拆毁检查,测 量破坏处的材料厚度尺寸,并对疲劳断口进行金相 分析。

试验一共进行了4次。如表2所示,所有模拟

图 1 铆接结构模拟试件示意图(单位:mm) Fig. 1 Sketch of riveted structure specimen(Unit:mm)

件的破坏部位均出现在下壁板的外排孔边,4个疲劳试验件所得到的平均寿命为321个块谱。断口 (见图2)分析结果表明:所有疲劳裂纹均为角裂 纹,近似为四分之一椭圆,裂纹起始于孔边表面,并 以四分之一角裂纹扩展,角裂纹均起始于下壁板与 下带板相接触的那面。

表1 试验中施加的载荷谱块谱

Tab. 1 Block spectrum of load spectrum used in experiments

序号	过载	状态	循环周次
1	0.5g~3.5g	状态I	212.20
2	0.5 $g \sim 3.5g$	状态 Ⅱ	89.00
3	$1.0g \sim 4.5g$	状态I	20.70
4	$1.0g \sim 4.5g$	状态Ⅱ	6.90
5	$4.5g \sim 5.5g$	状态I	11.70
6	$0.5g \sim 5.5g$	状态I	31.64
7	$0.0g \sim 6.0g$	状态I	3.00
8	$1.0g \sim 5.5g$	状态I	11.00
9	2.5 $g \sim$ 5.5 g	状态I	200.00
10	$1.0g \sim 5.0g$	状态I	95.00
11	$1.5g \sim 6.5g$	状态I	3.28
12	$0.0g \sim 4.0g$	状态I	93.65
13	$0.0g \sim 4.0g$	状态Ⅱ	38.75
14	$1.0g \sim 3.7g$	状态I	319.95
15	1.0g~3.7g	状态 Ⅱ	109.79

表 2 铆接结构模拟件疲劳试验结果及疲劳寿命评估结果

 Tab. 2
 Fatigue test results and fatigue life assessment results of riveted structure specimen

试件	疲劳寿命/	····· 노가 것만 /스-	平均寿命/	
编号	块谱数	破坏部位	块谱数	
1#	368	壁板外排孔边(见图 2(a))	321	
2 #	242	壁板外排孔边	321	
3#	300	壁板外排孔边	321	
4 #	373	壁板外排孔边(见图 2(b))	321	
采用等效 SSF 法得到的评估结果				
采用本文给出的新方法得到的评估结果 490				

(a) 1#模拟件的断口

(b) 4#模拟件的断口图 2 铆接结构模拟件断口分析Fig. 2 Fracture in riveted structure specimen

下面分别采用本文所提出的新方法和等效 SSF法对这一铆接结构模拟件和所进行的疲劳试 验进行相应的寿命评估,试验结果将用来验证两种 评估方法所获得结果的准确性。

2 新方法

在疲劳寿命分析中,通过理论应力集中系数 k_T 来反映缺口应力集中的严重程度。在通过传统 的名义应力法进行疲劳寿命评估时,通过对相应材 料在不同 k_T 下的 S-N 曲线进行插值,来获得最终 的评估寿命。这一处理方法,回避了直接讨论和回 答缺口试件高应力集中区域哪一点的力学状态最 终控制着结构的疲劳寿命这一问题。

从疲劳破坏机理来看,疲劳损伤在局部高应力 区累积导致疲劳裂纹的萌生,疲劳破坏起始于一个 或数个,甚至几十个晶粒范围。从疲劳破坏的整个 过程来看,裂纹总是先沿着最大剪应力方向穿透几 个晶粒,再沿着与拉应力垂直的方向扩展。在整个 裂纹形成及扩展的过程中,不仅涉及到裂纹形成及 经过的这些晶粒,还受到周围晶粒的阻滞和限制。 因此,对于缺口试件,控制着试件疲劳寿命的并不 是缺口部位应力最大处那一点的应力状态,而是距 离该点数个晶粒一点的应力状态。

在疲劳寿命分析中常常采用 Peterson 公 式^[1] $k_f = 1 + \frac{k_T - 1}{1 + a/\rho}$,根据缺口应力集中的严重 程度找到光滑试件的疲劳强度与缺口试件疲劳强 度的比值——疲劳缺口系数 k_f 。Peterson 公式中 的 ρ 为缺口根部半径,a为材料常数,与材料的抗 拉强度有关。材料常数 a 正是反映了真正控制着 结构疲劳寿命的关键点,与缺口部位应力最大处相 隔多远的关键常数。从相关手册可以查得^[1],对于 2A12 铝合金材料来说,这一距离为a=0.12 mm。

在下面的分析中,将铆接造成的孔边残余应 力,以及铆钉和钉孔之间由于载荷传递而形成的应 力分布分离开来进行讨论:通过弹塑性力学模型求 解出铆钉和钉孔之间由过盈配合所造成的孔边残 余应力分布;通过三维弹塑性、接触非线性有限元 分析,求解出铆钉和钉孔之间由载荷传递所造成的 应力分布。将以上两个应力场进行叠加,如图 3 所 示,取叠加后沿径向距离疲劳危险部位应力最大处 0.12 mm 的那一点的应力值,代入 2A12-T0 铝合 金材料光滑试件(*k*_T=1)的 S-N 曲线,在 Miner 线 性累计损伤理论下得到结构疲劳寿命的评估值。

图 3 控制铆接连接件疲劳寿命关键点位置的示意图

Fig. 3 Position of key point controlling fatigue life of riveted connecting component

2.1 残余应力分析

文献[3]根据弹塑性力学理论,选用 Tresca 屈服条件,给出了计算铆接孔边残余应力的力学模型。在知道铆接前铆钉孔的初始半径 a_0 ,铆接后铆钉孔的最终半径 a_1 ,以及铝合金板的弹性模量 *E*,泊松比 v,屈服极限 σ_i 后,则可以通过试凑法,由 式(1)获得铆接孔边塑性区域(如图 3 所示)的半径 ρ ,进而可以依据式(2)获得铆钉孔边周向应力 σ_0 随半径 r 的变化规律。

$$\frac{a_1}{a_0} = \frac{1+v}{E} \sigma_s \left[(1-v) \frac{\rho^2}{a_1 a_0} - \frac{a_1}{a_0} (1-2v) \right] \cdot \left(\ln \frac{\rho}{a_1} + \frac{1}{2} \right) + 1$$
(1)

$$\sigma_{\theta}(r) = \sigma_{s} \left[\ln(r/\rho) + \frac{1}{2} \right] \quad a_{1} \leqslant r \leqslant \rho \quad (2)$$

通过实际测量铆接前通过铰孔获得的铆接孔 孔径(5 个测量值取平均),得 $2a_0 = 4.724$ mm。如 图 4 所示,通过 250 kV 工业 CT 对铆接后的结构 件进行计算机断层扫描(5 个测量值取平均),得到 $2a_1 = 4.801$ mm。另外,已知 2A12 铝合金的材料 参数为 E = 68 GPa,v = 0.33, $\sigma_s = 311$ MPa。将 以上数据代入式(1),解得孔边塑性区域半径 ρ 为 5.136 mm。将 ρ 值代入式(2),得到距离孔边疲劳 部位危险点 0.12 mm 处,也即 $r = a_1 + 0.12 =$ 2.523 mm处的周向残余应力 $\sigma_{0.0.12} = -65.88$ MPa。

图 4 通过工业 CT 对铆接连接件的断层扫描图像 Fig. 4 Computed tomography image of riveted connecting component obtained by industry CT

2.2 三维弹塑性、接触非线性有限元计算

按照图 1 所示几何结构和尺寸,沿轴对称线取 下半部分的四分之一模型建立三维几何模型,铆钉 孔和铆钉的直径都取为 d=2a₁=4.801 mm 。由 于在文中 2.1 小节已经将残余应力的因素分离并 定量估算出来,因此,在通过三维有限元计算进行 应力分析时,仅仅作为一个接触非线性问题考虑, 不再考虑预应力的影响。

对于铝合金材料在弹性范围内材料参数的相 关设定同前,并通过稳态循环应力-应变($\sigma \epsilon$)曲 线的近似表达式 $\epsilon = \frac{\sigma}{E} + (\frac{\sigma}{K'})^{\frac{1}{n}}$ 来描述铝合金材 料的塑性行为,其中 K'为循环强度系数,n为循环 应变硬化指数。查找相关手册^[4],对于 2A12 铝合 金材料取 K' = 870 MPa, n' = 0.097 0。对于铆 钉,采用线弹性本构模型,弹性模量和泊松比分别 为 196 GPa 和 0.3。

采用 SOILD 45 单元对于铝合金板材和销钉 等三维实体进行剖分。采用 TARGE 170 单元对 12 个销钉孔的内表面,以及下壁板的上下两个表 面进行剖分,采用 CONTA 174 单元对 12 个销钉 的外表面,下带板的下表面以及肋缘条的上表面进 行剖分,以建立接触关系。对于潜在的疲劳危险部 位——12 处销钉孔部位进行局部网格加密,沿着 每个销钉孔的圆周分布有 100 个节点。总单元数 目为 504 407。

对所有的对称面施加轴对称位移约束。在加 载端沿拉伸方向施加相应的拉伸载荷,并且对于加 载端面上的全部节点,除保留沿着拉伸方向的位移 自由度外,沿其他方向的位移自由度全部约束,以 增加计算的稳定性。

采用 Newton-Raphson 迭代算法来求解该非 线性计算问题,采用扩展拉格朗日算法处理接触非 线性计算,选取力收敛准则,收敛精度为 0.01。

如图 5 所示,给出了对应于状态 I,在 1g 过载 状态下,铆接连接模拟件下壁板第一主应力的分布 云图。可以看到整个板面较为均匀的承载了拉伸 载荷,在每一个钉孔处出现了显著的应力集中。其 中,应力最大值出现在 1 # 钉孔的位置,并且,应力 峰值对应的 4 164 # 节点位于 1 # 钉孔下壁板与下 带板相接触的那面,这与试验结果完全一致,也与 SSF 法得到的结果互相印证。

对应表 1 可以看到,整个载荷谱涉及到状态 I 和状态 II 共 15 个不同的过载状态。按照上述计算 方法,如表 3 所示,分别给出了这 15 个过载状态中

- 图 5 通过三维弹塑性、接触非线性有限元分析得到的 下壁板对应状态 I (1g)的第一主应力分布云图
- Fig. 5 Distribution of the first principal stress related to state I (1g) of lower panels obtained by 3-D elastic-plastic contact non-linear FEM simulation

图 6 疲劳危险部位局部网格加密 Fig. 6 Mesh refinement at fatigue dangerous position

4164 # 节点所对应的第一主应力峰值。

如图 6 所示,围绕 4 164 # 节点将局部的单元 加密,加密后的局部单元尺寸在 10 μm 左右。为 了数据处理的方便,避免插值和数据拟合的麻烦, 如图 3 所示,在局部加密单元的时候,通过设置"硬 点"(Hard point)的方法在沿径向距离 4 164 # 节 点 0.12 mm 的地方设置一个节点(21 778 # 节 点),该节点的第一主应力数值将直接参与后续的 疲劳寿命评估。在局部网格加密之后,其余计算技 术路线不变,重新计算了对应于状态 Ι 和状态 II 共 15 个不同过载状态的算例,如表 3 所示,得到了 21 778 # 节点第一主应力的值。将该值除去 2.1 小节计算出来的 21 778 # 节点处的 65.88 MPa 周 向残余应力值,如表 3 最右边一列所示,得到了最 终控制和决定结构疲劳寿命的应力值。将该值代 入 2A12-T0 铝合金材料光滑试验件的 S-N 曲 线^[4-5],在 Miner 线性累计损伤理论下得到该铆接 连接结构件的疲劳寿命评估值为 490 个块谱。可 以看到,通过新方法对铆接结构模拟件进行疲劳寿 命评估所得到的结果与试验结果也是较为接近的。

表 3 通过三维弹塑性、接触非线性有限元分析得到的结 果及与残余应力的叠加

Tab. 3Date obtained by 3-D elastic-plastic contact non-line-
ar FEM simulation and its superposition with residu-
al stress

状态		4 164 # 节点	21 778 # 节点	21 778 # 节点第一
	过载	第一主应力	第一主应力	主应力与残余应力
		值/MPa	值/MPa	叠加后的值/MPa
状态 I	0.5g	290.05	260.83	194.95
	1.0g	305.00	273.27	207.39
	1.5g	317.66	287.06	221.18
	2.5g	345.59	314.44	248.56
	3.5g	372.99	341.75	275.87
	3.7g	378.98	347.49	281.61
	4.0g	387.89	356.00	290.12
	4.5g	400.48	368.62	302.74
	5.0g	412.56	380.83	314.95
	5.5g	423.82	392.36	326.48
	6.0g	435.21	403.65	337.77
	6.5g	448.79	416.86	350.98
状 态 Ⅱ	0.5g	289.91	260.69	194.81
	1.0g	302.89	272.99	207.11
	3.5g	371.84	340.65	274.77
	3.7g	377.74	346.31	280.43
	4.0g	386.59	354.76	288.88
	4.5g	399.15	367.28	301.40

可以看到,这一针对铆接连接件进行疲劳寿命 评估的新方法,在理论上弥补了 SSF 法的众多不 足和瑕疵。对于 SSF 法来说,存在的主要问题有 如下几个方面:

第一,对于铆接结构来说,由于铆钉和钉孔之 间存在过盈配合,从而在铆钉孔的周边局部区域形 成了残余应力,这一残余应力对连接件的疲劳寿命 造成了显著影响。SSF 法通过孔表面质量系数α、 孔填充系数β以及挤压应力分布系数θ,来试图将 材料的 S-N 曲线修正到连接件的 S-N 曲线。可以 看到,这种描述方法没有抓住和贴近残余应力这一 根本,使得 SSF 法相关系数的选取在某些情况下 与实际有较大的差距,造成评估结果出现偏差。

第二,SSF 法没有考虑到孔边进入塑性的情况,因此,采用 SSF 法对结构连接件进行疲劳寿命 评估时所进行的有限元分析完全是一个线弹性模型,这固然在很大程度上减轻了计算工作量,但是, 这样的简化显然与事实不相符。

第三,SSF 法认为旁路载荷与钉传载荷造成的 最大应力点在同一个点上,从而将这两个载荷造成 的应力进行叠加,然后进行寿命评估。但是,这一 假设的依据不足。

相比较 SSF 而言,新方法则更加严谨和流畅。 在弹塑性理论体系下,通过理论分析精确给出了铆 接造成的孔边残余应力的分布规律,抓住了铆接对 结构件疲劳寿命产生影响的根源,贴近问题的本 质。无论是在分析铆接造成的残余应力,还是通过 三维有限元计算,求解铆钉孔周边的应力分布,都 是在弹塑性范围内进行讨论的,考虑了塑性变形的 存在和影响。并且,由于直接采用三维有限元模 型,通过接触非线性分析直接获得载荷传递在铆钉 孔局部造成的应力分布,使得整个计算力学模型更 加接近于结构件所经受的真实力学状态。因此,从 理论层面来说,这一新方法更为严密。

3 等效 SSF 法

沿图 1 所示的模拟件轴对称线,取下半部分的 四分之一模型建模,在 ANSYS 软件平台上进行有 限元计算。选择 PLANE 182 单元和 COMBINE 14 单元,通过板杆单元构建有限元模型。根据相 关手册中的试验数据^[6],将用来模拟铆钉连接的 COMBINE 14 单元的刚度设置为 K=53.312 kN/ mm。2A12 铝合金材料^[5]的弹性模量 E 和泊松比 v 分别为 69 GPa 和 0.33;7A09 铝合金材料^[5]的弹 性模量为 71 GPa,泊松比也是 0.33。在对称面上 对模型施加轴对称约束,沿拉伸方向对模型施加 1 N的单位载荷。

如图 1 所示,1 #,2 # 和 3 # 铆钉分别将下带 板和下壁板铆接到一起,其中下壁板上铆接的钉孔 为疲劳危险部位。通过计算,获得最危险部位 1 # 钉孔~3 # 钉孔的相关计算结果,如表 4 所示。考 虑到铆接连接模拟件在加工时采用铰孔加工方法, 在计算 SSF 时,将孔表面质量系数 α 和孔填充系 数β 分别取为 1.0 和 0.75^[6]。 表 4 通过板杆单元有限元模型计算得到的等效 SSF 法评 估数据(对应于 1 N 单位载荷)

Tab. 4 Assessment data by equivalent SSF method according to plate-rod FEM model (According to unit loading: 1 N)

钉孔	1 #	2 #	3 #
$\sigma_{\rm max}$ /Pa	16 950.887 1	16 519.512 9	15 643.146 5
$\sigma_{ m nom}/{ m Pa}$	4 000.828 1	3 771.458 4	3 413.052 0
SSF	3.117 6	3.285 1	3.437 5

从表 4 中可以看到下壁板上 1 # 钉孔疲劳危 险部位的应力峰值 σ_{max} 最大,表明 1 # 钉孔疲劳危 结构最危险的部位。表 4 中的结果仅仅是对模型 施加了 1 N 单位载荷时对应的结果,将其线性放 大,可知在 1g 时,1 # 钉孔对应于状态 I 的名义应 力为 30.13 MPa,对应于状态 II 的名义应力为 29.81 MPa。以上述 1g 时的名义应力值为基准, 依据表 1 对各个过载状态下的名义应力进一步的 进行线性缩、放,然后对 2A12-T0 铝合金在 $k_T =$ SSF=3.117 6 时的 S-N 曲线进行插值^[4+5],采用 Miner 线性疲劳累计损伤理论,对该铆接模拟件进 行疲劳寿命评估的结果为 503。可以看到,就这一 算例来看,通过本文所提出的新方法进行评估所得 到的结果,其评估精度较 SSF 法来说更高一些。

4 结 论

本文提出了一种针对铆接连接件进行疲劳寿 命评估的新方法,主要有如下几方面的工作:

(1)新方法提出将铆接过程中铆钉与钉孔之间由过盈配合造成的孔边残余应力,以及铆钉与钉孔之间通过接触和载荷传递造成的孔边应力分布分开加以讨论。运用弹塑性力学模型求解出孔边的残余应力,通过三维弹塑性、接触非线性有限元分析,计算出孔边的接触应力。

(2)将得到的这两个应力场进行叠加后,取沿径向距离疲劳危险部位应力最大处特定距离一点的应力值,作为控制整个铆接结构模拟件疲劳寿命的应力值。

(3)根据这一应力值对涉及到的相关材料光 滑试件 S-N 曲线进行插值,获得铆接结构模拟件 的疲劳寿命评估结果。

可以看出,该方法弥补了传统 SSF 法在理论 层面上的诸多不足,更为严密和流畅。通过与试验 结果的对比,验证了该方法的可行性和准确性。

参考文献:

- [1] 姚卫星. 结构疲劳寿命分析 [M]. 北京:国防工业出版社,2003.
- [2] 张成成,姚卫星,叶彬. 连接件疲劳寿命分析的等效 SSF法[J]. 航空学报,2009(2):271-275.
 Zhang Chengcheng, Yao Weixing, Ye Bin. Equivalent stress severity factor approach for fatigue of multi-fastener plate [J]. Acta Aeronautica et Astronautica Sinica, 2009(2): 271-275.
- [3] 吴森. 铆接干涉配合紧固件孔的弹塑性分析及其在 疲劳寿命估算中的应用[J]. 航空学报,1989(12): 662-665.

Wu Sen. Elastic-plastic analyses of fastener holes of interference-fit revets and its application in fatigue life estimation [J]. Acat Aeronautica et Astronautica Sinica, 1989(12):662-665.

- [4] 吴学仁. 飞机结构金属材料力学性能手册(第一卷) [M]. 北京:航空工业出版社,1996.
- [5] 颜鸣皋,刘伯操,吴世平,等.工程材料实用手册(第3 卷)[M].北京:中国标准出版社,2002.
- [6] 薛景川,魏志毅,杨玉功,等. 航空结构连接件疲劳分 析手册[M]. 西安:飞机结构强度研究所,1985.